Strong Lensing: Some Cosmological Applications

- Strong Lensing Provides a Measure of Angle vs. Redshift
 - That is, the Angular Size Redshift Relation
- Recall That For an Isothermal Mass Distribution:

$$\rho(r) \sim r^{-2}$$
, $\mathbf{M}(r) \sim r$, $\Sigma(\xi) = \frac{\sigma^2}{2\pi Gr}$, $\theta_E = \frac{\sigma^2}{c^2} \frac{D_{ds}}{D_s}$

So if we could measure the velocity dispersion of the lensing galaxy over some spectrograph aperture (r_{ap}) , we could compute the dynamical mass:

$$M(dyn) = \frac{\sigma^2 r_{ap}}{G}$$

and compute the corresponding projected mass density within the Einstein radius using a model for extrapolation. If $\rho(r) \sim r^{\gamma}$:

$$M_E(dyn) = \frac{\sigma^2 D_d \theta_E}{G} \left(\frac{\theta_{ap}}{\theta_E}\right)^{2-\gamma} f(\gamma)$$

where $f(\gamma)$ is a correction for anisotropy (1 for an isothermal). In this case:

$$\boldsymbol{\theta}_E = \left(\frac{\sigma_{ap}}{c}\right)^2 \frac{D_{ds}}{D_s} \left(\frac{\theta_{ap}}{\theta_E}\right)^{2-\gamma} f(\gamma)^{-1}$$

(c.f. Link & Pierce 1998; ; Treu 2010; Biesiada 2011)

Strong Lensing and Cosmology - I

- Thus Cosmological Constraints Can Be Extracted from Strongly Lensed Systems
 - Problems Arise Due to:
 - the small size of spectrograph apertures requiring significant extrapolations to the Einstein radius (uncertainty in the power law index)
 - the uncertainties due to the degree of velocity anisotropy
- In the Case of Two or More Sources with a Single Lensing Mass the Ratio of the θ_E Depends Only on Cosmology and not the Mass Distribution for an Isothermal. With Three Sources One Can Also Solve for the Power Law Index (Link & Pierce 1998)
 - Technique Eliminates Need to Measure Velocity Dispersions, only Need Source Redshifts
 - Galaxy-Galaxy Lensing is Rare, but a Few Double Lensed Sources are Known
 - Method Works Best for Clusters of Galaxies
 - Complications Arise From Dark Matter
 Sub-structure and From Cluster Members

Simulated gravitational arcs at different redshift. Inset shows HDF galaxy used.

Strong Lensing and Cosmology - II

- When Applied to Real Clusters the Complications Rise Dramatically
 - Clusters Have Lots of Substructure

•

- Cluster Members Themselves Produce Lensing
 - Assume a Constant Mass/Light Ratio?
- Cluster Dark Matter Could be Clumpy
 - Clusters Have Lots of Arcs So More Information
 - Reconstruct Dark Matter Distribution with Maximum Likelihood?
 - Method Applied by Jullo et al. 2010 (similar results to BAO or SN Ia at the time)

HST-ACS images of two clusters with gravitational arcs. Left: Abell 2218, Right: CL 0024+1654

Strong Lensing and Cosmology - III

- Given the Uncertainties in the Method & Success of SN Ia + BAO More Interest of Late in Using Clusters as Telescopes
- Modeling of System Allows the Magnification Over the FOV to Be Estimated and the Critical Curves Traced
 - Magnifications Can Approach 50x Enabling the Discovery of High Redshift Galaxies
 - Location of Critical Curves Used to Search for High-z Galaxies (e.g. Kneib et al. 2004)

HST-ACS image of MACS0451.9+0006. The critical curve shown in red.

Abell 2218. Lyman-break galaxy at z ~ 6.8 is circled.

Strong Lensing and Cosmology - IV

- Magnification via Strong Lensing Appears Just Sufficient to Measure Cosmological Parallax (e.g. McGough & Pierce 2020)
 - CMB Dipole Provides Absolute Reference of Our Motion Through Space
 - Our Line-of-Sight Changes so the Impact Parameter (β) of a Lensed Source Changes Over Time

• Parallax Distance is a New Measure of Cosmology:

Luminosity Distance (SN Ia): $D_L = (1 + z)D_M$ Angular-size Distance (BAO): $D_A = (1 + z)^{-1}D_M$ Parallax Distance: $D_P = D_M$

where D_M is the transverse co – moving distance.

- Signal is Purely Geometrical
- Gravitational Lensing Magnifies the Effect
- Signal Accumulates Over Time
- Not Currently Measurable with GAIA or VLBI
- Next Generation of ELTs with Adaptive Optics
 - Will Provide 4 μ arcsec Astrometry
 - Sufficient for Cosmological Parallaxes
- Might Become Measurable with Upgraded Gravity

5

Strong Lensing and Cosmology – IV cont.

- Our Simulations Gravitationally Lensed Quasars Show That Measurement is Feasbible
 - A Sample of ~ 300 Systems Would Enable Cosmological Constraints ~ 5X Better Than SN Ia and/or BAO

References

- Link, R. & Pierce, M. J. 1998, ApJ 502, 63
- Biesiada, M. 2011, Advances in Modern Cosmology, pp 117-136, ed. A. Ghribi, (Shanghai: InTech China)
- Jullo, E. et al. 2010, Science 329, 924
- Treu, T. 2010, ARAA 48, 87
- Kneib, J.-P. & Natarajan, P. 2012, AAR, 19, 47
- Richards,