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2. LENSING BY POINT MASSES IN THE UNIVERSE

2.1. Basics of Gravitational Lensing

The propagation of light in arbitrary curved spacetimes is in gen-
eral a complicated theoretical problem. However, for almost all
cases of relevance to gravitational lensing, we can assume that
the overall geometry of the universe is well described by the
Friedmann-Lemaı̂tre-Robertson-Walkermetric and that the mat-
ter inhomogeneitieswhich cause the lensing are nomore than lo-
cal perturbations. Light paths propagating from the source past
the lens to the observer can then be broken up into three dis-
tinct zones. In the first zone, light travels from the source to a
point close to the lens through unperturbed spacetime. In the
second zone, near the lens, light is deflected. Finally, in the
third zone, light again travels throughunperturbed spacetime. To
study light deflection close to the lens, we can assume a locally
flat, Minkowskian spacetime which is weakly perturbed by the
Newtonian gravitational potential of the mass distribution con-
stituting the lens. This approach is legitimate if the Newtonian
potential Φ is small, Φ c2, and if the peculiar velocity v of
the lens is small, v c.
These conditions are satisfied in virtually all cases of astro-

physical interest. Consider for instance a galaxy cluster at red-
shift 0 3 which deflects light from a source at redshift 1.
The distances from the source to the lens and from the lens to the
observer are 1 Gpc, or about three orders of magnitude larger
than the diameter of the cluster. Thus zone 2 is limited to a small
local segment of the total light path. The relative peculiar veloci-
ties in a galaxy cluster are 103 km s 1 c, and the Newtonian
potential is Φ 10 4 c2 c2, in agreementwith the conditions
stated above.

2.1.1. Effective Refractive Index of a Gravitational Field

In view of the simplifications just discussed, we can describe
light propagation close to gravitational lenses in a locally
Minkowskian spacetime perturbed by the gravitational potential

of the lens to first post-Newtonian order. The effect of spacetime
curvature on the light paths can then be expressed in terms of an
effective index of refraction n, which is given by (e.g. Schneider
et al. 1992)
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Note that the Newtonian potential is negative if it is defined such
that it approaches zero at infinity. As in normal geometrical op-
tics, a refractive index n 1 implies that light travels slower than
in free vacuum. Thus, the effective speed of a ray of light in a
gravitational field is
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Figure 2 shows the deflection of light by a glass prism. The
speed of light is reduced inside the prism. This reduction of
speed causes a delay in the arrival time of a signal through the
prism relative to another signal traveling at speed c. In addition,
it causes wavefronts to tilt as light propagates from one medium
to another, leading to a bending of the light ray around the thick
end of the prism.

FIG. 2.—Light deflection by a prism. The refractive index n 1 of the
glass in the prism reduces the effective speed of light to c n. This causes
light rays to be bent around the thick end of the prism, as indicated.
The dashed lines are wavefronts. Although the geometrical distance be-
tween the wavefronts along the two rays is different, the travel time is
the same because the ray on the left travels through a larger thickness of
glass.

The same effects are seen in gravitational lensing. Because the
effective speed of light is reduced in a gravitational field, light
rays are delayed relative to propagation in vacuum. The total
time delay Δt is obtained by integrating over the light path from
the observer to the source:

Δt
observer

source

2
c3

Φ dl (3)

This is called the Shapiro delay (Shapiro 1964).
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Left: Light rays traveling through a prism are bent (v < c) so 
that the travel time for both is the same. Angle depends on 
pathlength difference if n is constant. Right: Angular deflection 
of a light ray (a) passing a mass M with impact parameter b. 
Deflection must be integrated along dz but we can approximate 
it over Dz.

As in the case of the prism, light rays are deflected when they
pass through a gravitational field. The deflection is the integral
along the light path of the gradient of n perpendicular to the light
path, i.e.

α̂ ∇ ndl
2
c2

∇ Φdl (4)

In all cases of interest the deflection angle is very small. We can
therefore simplify the computation of the deflection angle con-
siderably if we integrate ∇ n not along the deflected ray, but
along an unperturbed light ray with the same impact parame-
ter. (As an aside we note that while the procedure is straightfor-
ward with a single lens, some care is needed in the case of mul-
tiple lenses at different distances from the source. With multiple
lenses, one takes the unperturbed ray from the source as the ref-
erence trajectory for calculating the deflection by the first lens,
the deflected ray from the first lens as the reference unperturbed
ray for calculating the deflection by the second lens, and so on.)

FIG. 3.—Light deflection by a point mass. The unperturbed ray passes
the mass at impact parameter b and is deflected by the angle α̂. Most of
the deflection occurs within Δz b of the point of closest approach.

As an example,we now evaluate the deflection angle of a point
massM (cf. Fig. 3). The Newtonian potential of the lens is

Φ b z
GM

b2 z2 1 2
(5)

where b is the impact parameter of the unperturbed light ray, and
z indicates distance along the unperturbed light ray from the point
of closest approach. We therefore have

∇ Φ b z
GMb

b2 z2 3 2
(6)

where b is orthogonal to the unperturbed ray and points toward
the point mass. Equation (6) then yields the deflection angle

α̂
2
c2

∇ Φdz
4GM
c2b

(7)

Note that the Schwarzschild radius of a point mass is

RS
2GM
c2

(8)

so that the deflection angle is simply twice the inverse of the im-
pact parameter in units of the Schwarzschild radius. As an exam-
ple, the Schwarzschild radius of the Sun is 2 95 km, and the solar
radius is 6 96 105 km. A light ray grazing the limb of the Sun is
therefore deflected by an angle 5 9 7 0 10 5radians 1 7.

2.1.2. Thin Screen Approximation

Figure 3 illustrates that most of the light deflection occurs within
Δz b of the point of closest encounter between the light
ray and the point mass. This Δz is typically much smaller than
the distances between observer and lens and between lens and
source. The lens can therefore be considered thin compared to
the total extent of the light path. Themass distribution of the lens
can then be projected along the line-of-sight and be replaced by a
mass sheet orthogonal to the line-of-sight. The plane of the mass
sheet is commonly called the lens plane. The mass sheet is char-
acterized by its surface mass density

Σ ξ ρ ξ z dz (9)

where ξ is a two-dimensional vector in the lens plane. The de-
flection angle at position ξ is the sum of the deflections due to all
the mass elements in the plane:

α̂ ξ
4G
c2

ξ ξ Σ ξ

ξ ξ 2
d2ξ (10)

Figure 4 illustrates the situation.

FIG. 4.—A light ray which intersects the lens plane at ξ is deflected by
an angle α̂ ξ .
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In general, the deflection angle is a two-component vector. In
the special case of a circularly symmetric lens, we can shift the
coordinate origin to the center of symmetry and reduce light de-
flection to a one-dimensional problem. The deflection angle then
points toward the center of symmetry, and its modulus is

α̂ ξ
4GM ξ
c2ξ

(11)

where ξ is the distance from the lens center andM ξ is the mass
enclosed within radius ξ,

M ξ 2π
ξ

0
Σ ξ ξ dξ (12)

2.1.3. Lensing Geometry and Lens Equation

The geometry of a typical gravitational lens system is shown in
Fig. 5. A light ray from a source S is deflected by the angle α̂ at
the lens and reaches an observer O. The angle between the (arbi-
trarily chosen) optic axis and the true source position is β, and the
angle between the optic axis and the image I is θ. The (angular
diameter) distances between observer and lens, lens and source,
and observer and source are Dd, Dds, and Ds, respectively.

FIG. 5.—Illustration of a gravitational lens system. The light ray prop-
agates from the source S at transverse distance η from the optic axis to
the observer O, passing the lens at transverse distance ξ. It is deflected
by an angle α̂. The angular separations of the source and the image from
the optic axis as seen by the observer are β and θ, respectively. The re-
duced deflection angle α and the actual deflection angle α̂ are related
by eq. (13). The distances between the observer and the source, the ob-
server and the lens, and the lens and the source are Ds, Dd, and Dds,
respectively.

It is now convenient to introduce the reduced deflection angle

α
Dds
Ds

α̂ (13)

From Fig. 5 we see that θDs βDs α̂Dds. Therefore, the posi-
tions of the source and the image are related through the simple
equation

β θ α θ (14)
Equation (14) is called the lens equation, or ray-tracing equa-
tion. It is nonlinear in the general case, and so it is possible to
havemultiple images θ corresponding to a single source position
β. As Fig. 5 shows, the lens equation is trivial to derive and re-
quires merely that the following Euclidean relation should exist
between the angle enclosed by two lines and their separation,

separation angle distance (15)

It is not obvious that the same relation should also hold in curved
spacetimes. However, if the distances Dd s ds are defined such
that eq. (15) holds, then the lens equationmust obviously be true.
Distances so defined are called angular-diameter distances, and
eqs. (13), (14) are valid onlywhen these distances are used. Note
that in general Dds Ds Dd.
As an instructive special case consider a lens with a constant

surface-mass density. From eq. (11), the (reduced) deflection an-
gle is

α θ
Dds
Ds

4G
c2ξ

Σπξ2
4πGΣ
c2

DdDds
Ds

θ (16)

where we have set ξ Ddθ. In this case, the lens equation is
linear; that is, β∝ θ. Let us define a critical surface-mass density

Σcr
c2

4πG
Ds

DdDds
0 35gcm 2 D

1Gpc

1
(17)

where the effective distance D is defined as the combination of
distances

D
DdDds
Ds

(18)

For a lens with a constant surfacemass density Σcr, the deflection
angle is α θ θ, and so β 0 for all θ. Such a lens focuses per-
fectly, with a well-defined focal length. A typical gravitational
lens, however, behaves quite differently. Light rays which pass
the lens at different impact parameters cross the optic axis at dif-
ferent distances behind the lens. Considered as an optical device,
a gravitational lens therefore has almost all aberrations one can
think of. However, it does not have any chromatic aberration be-
cause the geometry of light paths is independent of wavelength.
A lens which has Σ Σcr somewhere within it is referred to

as being supercritical. Usually, multiple imaging occurs only if
the lens is supercritical, but there are exceptions to this rule (e.g.,
Subramanian & Cowling 1986).

2.1.4. Einstein Radius

Consider now a circularly symmetric lens with an arbitrary mass
profile. According to eqs. (11) and (13), the lens equation reads

β θ θ
Dds
DdDs

4GM θ
c2 θ

(19)

Due to the rotational symmetry of the lens system, a source
which lies exactly on the optic axis (β 0) is imaged as a ring if
the lens is supercritical. Setting β 0 in eq. (19) we obtain the
radius of the ring to be

θE
4GM θE

c2
Dds
DdDs

1 2
(20)
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This is referred to as the Einstein radius. Figure 6 illustrates the
situation. Note that the Einstein radius is not just a property of
the lens, but depends also on the various distances in the prob-
lem.

FIG. 6.—A source S on the optic axis of a circularly symmetric lens is
imaged as a ring with an angular radius given by the Einstein radius θE.

The Einstein radius provides a natural angular scale to de-
scribe the lensing geometry for several reasons. In the case of
multiple imaging, the typical angular separation of images is of
order 2θE. Further, sources which are closer than about θE to
the optic axis experience strong lensing in the sense that they are
significantly magnified, whereas sources which are located well
outside the Einstein ring are magnified very little. In many lens
models, the Einstein ring also represents roughly the boundary
between source positions that are multiply-imaged and those that
are only singly-imaged. Finally, by comparing eqs. (17) and (20)
we see that the mean surface mass density inside the Einstein ra-
dius is just the critical density Σcr.
For a point massM, the Einstein radius is given by

θE
4GM
c2

Dds
DdDs

1 2
(21)

To give two illustrative examples, we consider lensing by a star
in the Galaxy, for which M M and D 10 kpc, and lensing
by a galaxy at a cosmological distance with M 1011M and
D 1 Gpc. The corresponding Einstein radii are

θE 0 9mas
M
M

1 2 D
10kpc

1 2

θE 0 9
M

1011M

1 2 D
Gpc

1 2

(22)

2.1.5. Imaging by a Point Mass Lens

For a point mass lens, we can use the Einstein radius (20) to
rewrite the lens equation in the form

β θ
θ2E
θ

(23)

This equation has two solutions,

θ
1
2

β β2 4θ2E (24)

Any source is imaged twice by a point mass lens. The two
images are on either side of the source, with one image inside
the Einstein ring and the other outside. As the source moves
away from the lens (i.e. as β increases), one of the images ap-
proaches the lens and becomes very faint, while the other image
approachescloser and closer to the true position of the source and
tends toward a magnification of unity.

FIG. 7.—Relative locations of the source S and images I , I lensed
by a point mass M. The dashed circle is the Einstein ring with radius
θE. One image is inside the Einstein ring and the other outside.

Gravitational light deflection preserves surface brightness (be-
cause of Liouville’s theorem), but gravitational lensing changes
the apparent solid angle of a source. The total flux received from
a gravitationally lensed image of a source is therefore changed in
proportion to the ratio between the solid angles of the image and
the source,

magnification
image area
source area

(25)

Figure 8 shows the magnified images of a source lensed by a
point mass.
For a circularly symmetric lens, the magnification factor µ is

given by

µ
θ
β
dθ
dβ

(26)
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FIG. 8.—Magnified images of a source lensed by a point mass.

For a point mass lens, which is a special case of a circularly sym-
metric lens, we can substitute for β using the lens equation (23)
to obtain the magnifications of the two images,

µ 1
θE
θ

4 1
u2 2

2u u2 4
1
2

(27)

where u is the angular separation of the source from the point
mass in units of the Einstein angle, u βθ 1

E . Since θ θE,
µ 0, and hence the magnification of the image which is in-
side the Einstein ring is negative. This means that this image has
its parity flipped with respect to the source. The net magnifica-
tion of flux in the two images is obtained by adding the absolute
magnifications,

µ µ µ
u2 2

u u2 4
(28)

When the source lies on the Einstein radius, we have β θE, u
1, and the total magnification becomes

µ 1 17 0 17 1 34 (29)

How can lensing by a point mass be detected? Unless the lens
is massive (M 106M for a cosmologically distant source), the
angular separation of the two images is too small to be resolved.
However, evenwhen it is not possible to see the multiple images,
themagnification can still be detected if the lens and sourcemove
relative to each other, giving rise to lensing-induced time vari-
ability of the source (Chang & Refsdal 1979; Gott 1981). When
this kind of variability is induced by stellar mass lenses it is re-
ferred to asmicrolensing. Microlensing was first observed in the
multiply-imaged QSO 2237 0305 (Irwin et al. 1989), and may
also have been seen in QSO 0957 561 (Schild & Smith 1991;
see also Sect. 3.7.4.). Paczyński (1986b) had the brilliant idea of
usingmicrolensing to search for so-calledMassive Astrophysical
Compact Halo Objects (MACHOs, Griest 1991) in the Galaxy.
We discuss this topic in some depth in Sect. 2.2..

2.2. Microlensing in the Galaxy

2.2.1. Basic Relations

If the closest approach between a point mass lens and a source is
θE, the peak magnification in the lensing-induced light curve

is µmax 1 34. A magnification of 1 34 corresponds to a bright-
ening by 0 32 magnitudes, which is easily detectable. Paczyński
(1986b) proposed monitoring millions of stars in the LMC to
look for such magnifications in a small fraction of the sources.
If enough events are detected, it should be possible to map the
distribution of stellar-mass objects in our Galaxy.
Perhaps the biggest problemwith Paczyński’s proposal is that

monitoring a million stars or more primarily leads to the detec-
tion of a huge number of variable stars. The intrinsically variable
sources must somehow be distinguished from stars whose vari-
ability is caused bymicrolensing. Fortunately, the light curves of
lensed stars have certain tell-tale signatures — the light curves
are expected to be symmetric in time and the magnification is
expected to be achromatic because light deflection does not de-
pend onwavelength (but see themore detailed discussion in Sect.
2.2.4. below). In contrast, intrinsically variable stars typically
have asymmetric light curves and do change their colors.
The expected time scale for microlensing-induced variations

is given in terms of the typical angular scale θE, the relative ve-
locity v between source and lens, and the distance to the lens:

t0
DdθE
v

0 214yr
M
M

1 2 Dd
10kpc

1 2

Dds
Ds

1 2 200kms 1

v
(30)

The ratio DdsD 1
s is close to unity if the lenses are located in the

Galactic halo and the sources are in the LMC. If light curves are
sampled with time intervals between about an hour and a year,
MACHOs in the mass range 10 6M to 102M are potentially
detectable. Note that themeasurement of t0 in a givenmicrolens-
ing event does not directly giveM, but only a combination ofM,
Dd, Ds, and v. Various ideas to break this degeneracy have been
discussed. Figure 9 showsmicrolensing-induced light curves for
six differentminimum separations Δy umin between the source
and the lens. The widths of the peaks are t0, and there is a di-
rect one-to-onemapping between Δy and the maximummagnifi-
cation at the peak of the light curve. A microlensing light curve
therefore gives two observables, t0 and Δy.
The chance of seeing a microlensing event is usually ex-

pressed in terms of the optical depth, which is the probability that
at any instant of time a given star is within an angle θE of a lens.
The optical depth is the integral over the number densityn Dd of
lenses times the area enclosed by the Einstein ring of each lens,
i.e.

τ
1
δω

dV n Dd πθ2E (31)

where dV δωD2d dDd is the volume of an infinitesimal spheri-
cal shell with radius Dd which covers a solid angle δω. The in-
tegral gives the solid angle covered by the Einstein circles of the
lenses, and the probability is obtained upon dividing this quan-
tity by the solid angle δω which is observed. Inserting equation
(21) for the Einstein angle, we obtain

τ
Ds

0

4πGρ
c2

DdDds
Ds

dDd
4πG
c2

D2s
1

0
ρ x x 1 x dx

(32)
where x DdD 1

s and ρ is the mass density of MACHOs. In
writing (32), we have made use of the fact that space is locally

7

A source S displaced from a point mass by 
angle b with images I+ and I- found at positions 
q+ and q-.
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This is referred to as the Einstein radius. Figure 6 illustrates the
situation. Note that the Einstein radius is not just a property of
the lens, but depends also on the various distances in the prob-
lem.

FIG. 6.—A source S on the optic axis of a circularly symmetric lens is
imaged as a ring with an angular radius given by the Einstein radius θE.

The Einstein radius provides a natural angular scale to de-
scribe the lensing geometry for several reasons. In the case of
multiple imaging, the typical angular separation of images is of
order 2θE. Further, sources which are closer than about θE to
the optic axis experience strong lensing in the sense that they are
significantly magnified, whereas sources which are located well
outside the Einstein ring are magnified very little. In many lens
models, the Einstein ring also represents roughly the boundary
between source positions that are multiply-imaged and those that
are only singly-imaged. Finally, by comparing eqs. (17) and (20)
we see that the mean surface mass density inside the Einstein ra-
dius is just the critical density Σcr.
For a point massM, the Einstein radius is given by

θE
4GM
c2

Dds
DdDs

1 2
(21)

To give two illustrative examples, we consider lensing by a star
in the Galaxy, for which M M and D 10 kpc, and lensing
by a galaxy at a cosmological distance with M 1011M and
D 1 Gpc. The corresponding Einstein radii are

θE 0 9mas
M
M

1 2 D
10kpc

1 2

θE 0 9
M

1011M

1 2 D
Gpc

1 2

(22)

2.1.5. Imaging by a Point Mass Lens

For a point mass lens, we can use the Einstein radius (20) to
rewrite the lens equation in the form

β θ
θ2E
θ

(23)

This equation has two solutions,

θ
1
2

β β2 4θ2E (24)

Any source is imaged twice by a point mass lens. The two
images are on either side of the source, with one image inside
the Einstein ring and the other outside. As the source moves
away from the lens (i.e. as β increases), one of the images ap-
proaches the lens and becomes very faint, while the other image
approachescloser and closer to the true position of the source and
tends toward a magnification of unity.

FIG. 7.—Relative locations of the source S and images I , I lensed
by a point mass M. The dashed circle is the Einstein ring with radius
θE. One image is inside the Einstein ring and the other outside.

Gravitational light deflection preserves surface brightness (be-
cause of Liouville’s theorem), but gravitational lensing changes
the apparent solid angle of a source. The total flux received from
a gravitationally lensed image of a source is therefore changed in
proportion to the ratio between the solid angles of the image and
the source,

magnification
image area
source area

(25)

Figure 8 shows the magnified images of a source lensed by a
point mass.
For a circularly symmetric lens, the magnification factor µ is

given by

µ
θ
β
dθ
dβ

(26)
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Since the Laplacian of ψ is twice the convergence, we have

κ
1
2
ψ11 ψ22

1
2
tr ψi j (56)

Two additional linear combinations of ψi j are important, and
these are the components of the shear tensor,

γ1 θ
1
2
ψ11 ψ22 γ θ cos 2φ θ

γ2 θ ψ12 ψ21 γ θ sin 2φ θ

(57)

With these definitions, the Jacobian matrix can be written

A 1 κ γ1 γ2
γ2 1 κ γ1

1 κ 1 0
0 1 γ cos2φ sin2φ

sin2φ cos2φ
(58)

The meaning of the terms convergence and shear now becomes
intuitively clear. Convergence acting alone causes an isotropic
focusing of light rays, leading to an isotropic magnification of
a source. The source is mapped onto an image with the same
shape but larger size. Shear introduces anisotropy (or astigma-
tism) into the lens mapping; the quantity γ γ21 γ22

1 2 de-
scribes the magnitude of the shear and φ describes its orientation.
As shown in Fig. 13, a circular source of unit radius becomes, in
the presence of both κ and γ, an elliptical image with major and
minor axes

1 κ γ 1 1 κ γ 1 (59)

The magnification is

µ detM 1
detA

1
1 κ 2 γ2

(60)

Note that the Jacobian A is in general a function of position θ.

3.3. Gravitational Lensing via Fermat’s Principle

3.3.1. The Time-Delay Function

The lensing properties of model gravitational lenses are espe-
cially easy to visualize by application of Fermat’s principle of
geometrical optics (Nityananda 1984, unpublished; Schneider
1985; Blandford & Narayan 1986; Nityananda & Samuel 1992).
From the lens equation (14) and the fact that the deflection angle
is the gradient of the effective lensing potential ψ, we obtain

θ β ∇θψ 0 (61)

This equation can be written as a gradient,

∇θ
1
2
θ β 2 ψ 0 (62)

The physical meaning of the term in square brackets becomes
more obvious by considering the time-delay function,

t θ
1 zd
c

DdDs
Dds

1
2
θ β 2 ψ θ

tgeom tgrav
(63)

FIG. 13.—Illustration of the effects of convergence and shear on a cir-
cular source. Convergence magnifies the image isotropically, and shear
deforms it to an ellipse.

The term tgeom is proportional to the square of the angular off-
set between β and θ and is the time delay due to the extra path
length of the deflected light ray relative to an unperturbed null
geodesic. The coefficient in front of the square brackets ensures
that the quantity corresponds to the time delay as measured by
the observer. The second term tgrav is the time delay due to grav-
ity and is identical to the Shapiro delay introduced in eq. (3), with
an extra factor of 1 zd to allow for time stretching. Equations
(62) and (63) imply that images satisfy the condition∇θt θ 0
(Fermat’s Principle).
In the case of a circularly symmetric deflector, the source, the

lens and the images have to lie on a straight line on the sky.
Therefore, it is sufficient to consider the section along this line
of the time delay function. Figure 14 illustrates the geometrical
and gravitational time delays for this case. The top panel shows
tgeom for a slightly offset source. The curve is a parabola centered
on the position of the source. The central panel displays tgrav for
an isothermal sphere with a softened core. This curve is centered
on the lens. The bottom panel shows the total time-delay. Ac-
cording to the above discussion images are located at stationary
points of t θ . For the case shown in Fig. 14 there are three sta-
tionary points, marked by dots, and the corresponding values of
θ give the image positions.

3.3.2. Properties of the Time-Delay Function

In the general case it is necessary to consider image locations in
the two-dimensional space of θ, not just on a line. The images
are then located at those points θi where the two-dimensional
time-delay surface t θ is stationary. This is Fermat’s Principle
in geometrical optics, which states that the actual trajectory fol-
lowed by a light ray is such that the light-travel time is stationary
relative to neighboring trajectories. The time-delay surface t θ
has a number of useful properties.
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Time Delays in Gravitational Lensing

• Conceptually, time delay occurs due to both geometric 
path length differences and time dilation, a function of 
the potential depth (see figure).
– Result is a time delay surface that is a function of angular

position.
– A given source can produce multiple images if its position is 

inside the Einstein radius. The time delay for these different ray 
paths is necessarily different.

– A variable source, e.g., quasar or supernovae will exhibit light 
curve delays between the different images that correspond to 
these geometric and dilation effects. 

• The Hessian of the potential maps the local 
curvature of the time delay surface:

𝑻 =
𝝏𝟐𝒕(𝜽)
𝝏𝜽𝒊𝝏𝜽𝒋

∝ 𝜹𝒊𝒋 −𝝍𝒊𝒋 = 𝑨

• Images can be grouped according to where they are 
located on the time delay surface:

Type I: images located at a minimum of t(q), det A > 0, tr A >0,
det A, positive magnification,
Type II: images located at a saddle point, det A < 0 (eigenvalues 
have opposite sign), negative magnification,
Type III: images located at a maximum of t(q), > 0, det A > 0, tr
A < 0, both eigenvalues are negative, positive magnification.

8

FIG. 14.—Geometric, gravitational, and total time delay of a circularly
symmetric lens for a source that is slightly offset from the symmetry
axis. The dotted line shows the location of the center of the lens, and β
shows the position of the source. Images are located at points where the
total time delay function is stationary. The image positions are marked
with dots in the bottom panel.

1 The height difference between two stationary points on t θ
gives the relative time delay between the corresponding im-
ages. Any variability in the source is observed first in the
image corresponding to the lowest point on the surface, fol-
lowed by the extrema located at successively larger values
of t. In Fig. 14 for instance, the first image to vary is the one
that is farthest from the center of the lens. Although Fig.
14 corresponds to a circularly symmetric lens,this property
usually carries over even for lenses that are not perfectly cir-
cular. Thus, in QSO 0957 561, we expect the A image,
which is 5 from the lensing galaxy, to vary sooner than
the B image, which is only 1 from the center. This is in-
deed observed (for recent optical and radio light curves of
QSO 0957+561 see Schild & Thomson 1993; Haarsma et
al. 1996, 1997; Kundić et al. 1996).

2 There are three types of stationary points of a two-
dimensional surface: minima, saddle points, and maxima.
The nature of the stationary points is characterized by
the eigenvalues of the Hessian matrix of the time-delay
function at the location of the stationary points,

T ∂2t θ
∂θi∂θ j

∝ δi j ψi j A (64)

ThematrixT describes the local curvatureof the time-delay
surface. If both eigenvalues ofT are positive, t θ is curved
“upward” in both coordinate directions, and the stationary
point is a minimum. If the eigenvalues of T have oppo-
site signs we have a saddle point, and if both eigenvalues
of T are negative, we have a maximum. Correspondingly,
we can distinguish three types of images. Images of type I
arise at minima of t θ where detA 0 and tr A 0. Im-

ages of type II are formed at saddle points of t θ where the
eigenvalues have opposite signs, hence detA 0. Images
of type III are located at maxima of t θ where both eigen-
values are negative and so detA 0 and tr A 0.

3 Since the magnification is the inverse of detA , images of
types I and III have positive magnification and images of
type II have negative magnification. The interpretation of
a negative µ is that the parity of the image is reversed. A
little thought shows that the three images shown in Fig. 14
correspond, from the left, to a saddle-point, a maximum
and a minimum, respectively. The images A and B in QSO
0957 561 correspond to the images on the right and left
in this example, and ought to represent a minimum and a
saddle-point respectively in the time delay surface. VLBI
observations do indeed show the expected reversal of par-
ity between the two images (Gorenstein et al. 1988).

FIG. 15.—The time delay function of a circularly symmetric lens for a
source exactly behind the lens (top panel), a source offset from the lens
by a moderate angle (center panel) and a source offset by a large angle
(bottom panel).

4 The curvature of t θ measures the inverse magnification.
When the curvature of t θ along one coordinate direction
is small, the image is strongly magnified along that direc-
tion, while if t θ has a large curvature the magnification is
small. Figure 15 displays the time-delay function of a typ-
ical circularly symmetric lens and a source on the symme-
try axis (top panel), a slightly offset source (central panel),
and a source with a large offset (bottom panel). If the sep-
aration between source and lens is large, only one image is
formed, while if the source is close to the lens three images
are formed. Note that, as the source moves, two images ap-
proach each other, merge and vanish. It is easy to see that,
quite generally, the curvature of t θ goes to zero as the im-
ages approach each other; in fact, the curvature varies as
Δθ 1. Thus, we expect that the brightest image configura-
tions are obtained when a pair of images are close together,
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Time delays are composed of two parts: a 
geometric part due to path length differences 
and a part due to gravitational time dilation.
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