Gravitational Lensing - I

Possibility of Light Rays Being Deflected by Mass
Discussed By Newton, Soldner and Laplace

—  Typical Derivation is to Use Hyperbolic Orbital Asymptotes and
Compute the Deflection

—  Classical Result: A8 = %g%’

G.R. Predicts the Deflection is Actually Twice the
Classical Value Due to Space Time Curvature

Various Approaches to the Derivation but Simplest
(Schneider et al. 1994)

—  Begin by Considering a Perturbed Minkowski Metric

—  Calculate the New Line-element and Note That Light Follows Null
Geodesic (ds = 0)

—  Then Assigning an Effective Index of Refraction to Space-time:
n=1- ?22 @ (see Appendix)

—  This is Analogous to Deriving the Deflection of Light Through a Prism
via Fermat’s Principle, but for GR n is Not a Constant. Specifically:

Left: Light rays traveling through a prism are bent (v <c¢) so
that the travel time for both is the same. Angle depends on

2 . GM .
a=— f V, ndl = b3 f V, @dl, with ®(b,z) = ———n from which: pathlength difference if n is constant. Right: Angular deflection
(b?+2) of a light ray (o) passing a mass M with impact parameter b.
GMb ; ; ;
V,®(b,2) = . Giving: Deflection must be integrated along dz but we can approximate
19(b.2) (b2+22) & it over Az.
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Note: this is twice the classical result given above. For extended mass
distributions we replace the mass with the projected mass surface density:
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Lensing Geometry & Lens Equation

A light ray from source S is deflected by the angle @ to an
observer at O. For a deflecting mass on the optical axis and a
source displaced by an angle 3 the image (I) is found at angle
0. The various distances will be cosmological angular size
distances. If we call the reduced deflection angle a:

a= Das a
D
Since 8D = BD; + aD ,;, we see that:
B=6-a
. _ p_ Das 46M(6)
Thus: f(6) =0 NPT

For a source on the axis of the deflecting mass = 0 the image
is a ring (Einstein ring):
4GM(0g) Dy 12
O = [ cZ  D.D,
For a point mass we can rewrite the lens equation as:

2
B =0- %E and solving for 6 we find two solutions:

6, =%<Bi /ﬁz +40§>

That is, a displaced source s is imaged twice by a point mass,
one inside the Einstein Radius and one outside.




Lensing Magnification

Gravitational lensing changes the apparent solid angle of
the source, but surface brightness is conserved so we can

define the brightness magnification as:

magnification = fmage area oy =249
9 "~ source area K= gdp’

point mass we have:

and so for a
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where u is the angular separation of the source from
the mass in units of the Einstein radius: u = g03".
Negative magnifications indicate a parity inversion (flip) of

the images as shown in the figure. If the two images are
unresolved, as in microlensing, the net magnification is a

useful measure:

ut= [1—(

u2+2
u=|u,+|u_|= and so when a source is located
e+ -l = s

at the Einstein ring for the point mass the net magnification
is 1.34. Smaller impact parameters result in greater
magnifications and larger in less.

A source S displaced from a point mass by
angle B with images I, and I_ found at positions
0, and 0.



Lensing by Galaxies and Clusters

* Lensing from Extended Mass Distributions
Requires Knowing or Modeling the Mass
Distribution. Consider the Singular Isothermal

Sphere:

2
v

P(r) =5tz

Integrating along the line-of-sight (Abel integral) give
the projected mass density:
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and the deflection angle is :
o2
a= 41’1‘—;
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which is independent of impact parameter &. The
Einstein radius is:
2
= a—;’D‘“ = @ 2% = ¢ and the lens equation has
c“ Dg Dg
two solutions:

With the two images located along a line containing
the axis of the mass and the projected source position.
The magnification is:



Effective Lensing Potential

* Next Let’s Define an Effective Lensing Potential
First Define the Critical Mass Density:

¢ D
ZCR - 4t DdDds
Note: for the case of Z.r = constant, (@) = 6 and the lens actually has a focal length.
Think of it as constant index of refraction. Let’s now rescale the lensing potential for

distances as an effective lensing potential:
Y(o) = ds fd)(D 0,z)dz
( ) Dd Ds :2 dyYv,

The derivatives have interesting properties. Gradient:
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and for the Laplacian:
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Where the surface mass density scaled with its critical value is k(0) and is called the
convergence.




Effective Lensing Potential: Convergence & Shear

The effective potential can be written in terms of the convergence:

P(6) == [ k(6')n|6 — 6'|d?6’

Since the deflection angle is the gradient of y:

a(@) =V =- f K(6' )| = e'|2 d20’ These formalisms allow us to then write the lens mapping equation as a
Jacobian matrlx A. This becomes important when we consider non-axisymmetric lensing masses:
B da;(0) 0% (8)
A=—=(6;——=)=|6;j——=|=M"1
a0 ( i 7 96,00 i

A is evidently the inverse of the magnification tensor and it describes the mapping of a solid angle of the

source into a solid angle of the image. The magnification tensor thus describes the distortion of the images:
2

But a matrix of second partial derivatives of y (called the Hessian) describes the deviation from an identical
%y

mapping (i.e., not just a magnification). If we define ¢;; = W

we can write the convergence as:

K=5 (‘pll +YPy2) = trlpq

And two linear combinations of ¥;; can be used to define the shear tensor:

¥1(8) = 3 W11 — ¥22) = ¥(8)cos[2¢(8)], and ¥2(8) = Y1, = a1 = ¥(8)sin[2¢(6)]



Effective Lensing Potential: Convergence & Shear

The Jacobian matrix now becomes:

A_<1—x—yl 72 ) Convergence alone
B —Y2 1-k+vy,

=a-00 D-v(inre “rezs)

Now we see that the Jacobian (a function of 0) can
be thought of as two parts: a convergence
(magnification) alone portion and a shear
(distortion) that operates on a light cone (solid
angle) from the source (see figure). The
magnification is the determinant of A as before:

Source

Convergence + Shear
1
detA [(1 - K)2—y?]

u=detM =

All of this gives us the nomenclature to consider
elliptical mass distributions as well as examine
other lensing properties, such as time delay.



Time Delays in Gravitational Lensing

*  Conceptually, time delay occurs due to both geometric
path length differences and time dilation, a function of
the potential depth (see figure).

— Result is a time delay surface that is a function of angular
position.

— A given source can produce multiple images if its position is
inside the Einstein radius. The time delay for these different ray
paths is necessarily different.

— A variable source, e.g., quasar or supernovae will exhibit light
curve delays between the different images that correspond to
these geometric and dilation effects.

* The Hessian of the potential maps the local
curvature of the time delay surface:
_9%u(0)
— X (6;; —Y;i) =A
60 ae ( ij Yy )

* Images can be grouped according to where they are
located on the time delay surface:

Type I: images located at a minimum of t(0), det A > 0, tr A >0,
det A, positive magnification,

Type II: images located at a saddle point, det 4 < 0 (eigenvalues
have opposite sign), negative magnification,

Type I1I: images located at a maximum of t(0), > 0, det A > 0, tr
A <0, both eigenvalues are negative, positive magnification.

time delay

angular position

Time delays are composed of two parts: a
geometric part due to path length differences
and a part due to gravitational time dilation.
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Appendix - I

* Derivation of Effective Index of Refraction of Space-time
The unperturbed Minkowski metric is:
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whose line element becomes: ds? = (1 + Ec;) c2dt? — (1 - Ec;) (dx)?. Since light rays follow null geodesics ds = 0 so:
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So that the light speed in the gravitational field is thus:
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So that we can define a space-time index of refraction:
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