<u>Astr 5465 April 22, 2020</u> Dark Matter in Galaxy Clusters

Velocity Dispersions in Galaxy Clusters

- Many Cluster Catalogs
 - Optically Selected (low z): Abell (1958), Hoessel Gunn & Thuan (1980)
 - Optical Morphology: e.g., Leir & van den Bergh (1977)
 - X-Rays: Kellogg et al (1973), Jones & Forman (1984)
- Application of the Virial Theorm
 - With the First Velocities within the Coma Cluster Zwicky (1933) Proposed Existence of Dark Matter
 - If σ is Constant with Radius:

$$M(R) = \sqrt{\frac{\sigma^2 R}{G}}$$

- M(Coma) = 7 x 10^{14} M_o, M/L ~ 100
- First X-Ray Surveys
 - Galaxy Clusters Are Luminous X-Ray Sources (Giaconni et al 1972)
 - Very Extended, T ~ 10⁸ K
 - Mass in Hot Gas Comparable to That in Stars
 - Strong Iron Line Implies Processed Gas
 - Gas Stripped from Galaxies
 - Ram Pressure and/or Interactions

Most Recent Surveys

- High z Clusters in CDF-S: Giaconni et al (2001)
 - Cosmological Constraints (# vs z, Ω_m): White & Frenk 1991; Borgani et al. 2006; Mantz et al. 2007
- Virial Models Still Imply Dark Matter
 - Bullet Cluster Morphology Implies Non-Bayonic Dark Matter
 - Collision of Two Clusters
 - Hot X-Ray Gas Interacts and Dissipates Towards the Center
 - Dark Matter Morphology from Weak Lensing is Bi-Modal Implying No Dissipation

APOD NASA: 2018 March 26

Bullet Cluster

Gravitational Lensing

• Deep Imaging of Clusters of Galaxies Revealed Gravitational Lensing

(Lynds & Petrosian 1986)

- HST Images of Clusters Reveals Huge Number of Arcs from Lensed Background Galaxies (e.g., Abell 370, 1689 at right)
- Lensing Models Reveal Lots of Dark Matter (Grossman & Narvan 1989; Kneib 2012)
- Multiple Arcs Contrains Cosmological Models (Link & Pierce 1998)
 - Mass Profile Uncertainties Marginalized with Multiple Arcs at Different z
 - Can Constrain Angular Size vs z
- Large Cluster Lensing Surveys
 - MACS (Ebling et al. 2001): HST Imaging of ROSAT Clusters
 - Multi-cluster Treasury Program (MCT; Postman et al. 2011)
 Many Papers on Modeling
- Weak Lensing (Kaiser 1985)
 - Distortions in Image Shapes (via shear) Constrains Projected Mass (Surface Density)
 - Requires Stable PSF Over Image
 - Requires Lots of Galaxies to Average Out Shapes
 - Results Constrain Dark Matter Distribution (Bardeau et al. 2007; Okabe et al. 2010)

Abell 370

Abell 1689

Clusters as Nature's High-z Telescope

- Gravitational Lensing Provides
 Magnification of Background Sources
 - Allows Detection of Extremely Distant Galaxies
 - Search for "Short", i.e., Visible Wavelength Dropouts
 - Bright in NIRCAM Images
 - Example: HCM-6A in A370, z = 6.56 (bottom, Egami et al. 2005)
 - Example: z = 6.8 Galaxy in A2218 (right, Kneib et al. 2004)
- JWST Cluster Surveys Will Find Thousands!

Abell 2218

Catalogs of Field Galaxies

All Sky Galaxy Catalogs

- Optical Catalogs
 - Zwicky & ESO Catalogs
 - Magnitudes & Diameters
 - Surface Brightness Limits
 - Zone of Avoidance
- Near Infrared Catalogs
 - 2MASS (near-IR)
 - IRAS (mid-IR)
 - Color Selections Yield Galaxies
- Early Redshift Surveys
 - CFA + 21cm Surveys
 - Blind 21 cm Surveys
- Nearby Groups & Complexes (few Mpc)
 - Local, M81, Sculptor, M101, etc
 - Dozens of Galaxies
 - (Grav. Bound, ~1 2 Mpc Diameter)

• Nearest Clusters (within 20 Mpc)

- Ursa Major, Virgo, Fornax, Eridanus
- Hundreds of Galaxies
- (Grav. Bound, ~ 10 Mpc Diameter)
- Primary Features in Large-scale Structure (~ 100 Mpc)
 - Filaments with Embedded Clusters
 - Supercluster Complexes
 - Voids

Very Large-scale Structures

Local Superclusters

- On Larger Scales Other Rich clusters & Superclusters (~150 Mpc)
 - Coma Cluster + Supercluster
 - Hercules Cluster + Supercluster
 - Shapley Supercluster (several Abell Clusters)
 - Pisces-Cetus Supercluster Complex
 - Virgo Cluster Looks a Bit Small
- Rich Clusters
 - Thousands of Galaxies (Grav. Bound, 10s of Mpc in Diameter)
- Large Filaments with Embedded Clusters
 - Not Grav. Bound, Only the Clusters
 - Nearly Empty Voids

Redshift-Independent Distances

- Tully-Fisher Distances
- D_n $-\sigma$ Distances
- Surface Brightness Flutuations
- Tip of the Red Giant Branch
- Use Distance Indicator to Predict Hubble Velocity
- Subtract to Obtain Line-of-Sisght Peculiar Motion

Peculiar Velocity Field & Ω_m

Gravitational Acceleration & Density

- Local Peculiar Velocity Field
 - Lots of Peculiar Motions of Small Scales (e.g., Tully et al 1991), Including Virgo-centric Flow (~ 250 km/sec)
 - Early Results on Larger Scales Indicated Larger Streaming (~ 600 km/sec) of Local Volume Towards a "Great Attractor" (Dressler et al. 1987)
 - Was this a "Bulk Flow" Towards a Nearby Structure?
 - Hydra Centaurus Seemed Too Small
 - Velocities Too Large Over Too Small a Scale for ΛCDM with CMB Normalization
 - Reanalysis + New Data Sets Reduced Flow Amplitude to ~ 300 km/sec Over cz < 5000 km/sec

(e.g., Mathewson & Ford 1994)

- Peculiar Velocities on the Largest Scales

- Errors in Distance Are Logarithmic
- Errors in Peculiar Velocities Rise with Distance
 Requires Large Samples of Unbiased Distance Indicators
- Signal Comparable to That in CMB (~ 600 km/sec) Within 100 Mpc
 - Culprit Likely the Shapley Supercluster

- POTENT Reconstructions (Dekel 1994)

- Reconstruction of Density Field from Peculiar Motions
- Only Line of Sight Peculiar Velocities Available
- Requires Smoothing (cz ~ 1200 km/sec, approx. the distance to Virgo)
- Redshift Space Distortions
- Ω_m from Peculiar Velocities
 - $\Omega_{\rm m} = 0.25 + 0.05$

Mark III Velocity Field in Supergalactic Plane; CMB Frame

Redshift Space Distortions

- Density Fluctuations Result in Systematic Peculiar Velocities
- Statistical Approach via Correlation Function
 - Combining Spatial Correlations & Velocity Correlation Reveals "Redshift Space Distortions" (see figure)
 - Systematic Errors in Distance (V/H₀) Along Line-of-Sight
 - "Finger of God" Due to Line-of-Sight Velocity Dispersion Within Bound Groups
 - Foreground Galaxies Inferred too Far Away
 - Background Galaxies Inferred too Close
 - Squashing From Peculiar Motions
 - Similar Effect But in Projection
- Ω_m from Peculiar Velocities
 - Assuming LCDM for Dark Matter
 - CMB Normalization
 - No Larger-scale DM Distribution
 - $\Omega_{\rm m} = 0.3 + -0.05$

References

- Evolution of X-ray Clusters of Galaxies, Rosati, Borgani & Norman, ARAA, 40, 539
- Uhuru Catalog of X-ray Sources, Giaconni et al. 1972, ApJ 178, 281
- First Results from the X-Ray and Optical Survey of the Chandra Deep Field South, Giaconni et al. 2001, ApJ 551, 624
- Cluster Lenses, Kneib & Natarajan 2012, arXiv: 1202.0185v2
- Cosmological Parameters From Multiple-arc Gravitational Lensing Systems, Link & Pierce 1998, ApJ 502, 63
- POTENT Reconstructions, Dekel et al. 1993, ApJ 412, 1; Hudson et al. 1995, MNRAS