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Astr 5465 April 3, 2020
Galactic Dynamics I: Disks Continued

• Galactic Disk Dynamics
– Importance of Resonances

• If stars undergo periodic perturbation at same phase
in orbit

• Similar to asteroids and Jupiter
• Spiral pattern requires solid-body rotation and sprials 

have flat rotation curves
• Solution to the “winding problem” is to have the spiral 

be a wave propagating through the disk 
• Star pass through the arms and vice versa
• A pattern that rotates with Wp = W – k/2 will rotate as 

almost a solid body (Wp)
• Spiral structure will exist for ILR < R < OLR

ILR: Wp = W* - k/2, OLR: Wp = W* + k/2
• Outside that regions the stars are out of phase with the 

pattern and spiral density waves cannot exist
• Within CR (co-rotation) stars lead pattern, outside CR 

the pattern leads the stars (see dust lanes in M51)

• Derivation of Density Wave Theory
– Rather complicated and lengthy

• Start with hydrodynamic equations and continuity 
equation

• Assume a spiral form for the density perturbation
• Show that the response of a star is an epicyclic orbit

– I will write something up after spring break
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Galactic Dynamics I: Disks Continued
• Galactic Disk Stability

– Absolutely cold disk will gravitationally collapse
– Stellar velocity dispersion inhibits collapse
– Differential rotation (shear) inhibits collapse
– Toomre (1964) specifies conditions for disk stability via a 

Jeans argument:

Consider an overdense region of radius RJ  in a 
non-rotating disk:
The timescale for collapse:

tcoll ≈
RJ

GM / RJ( )1/2 ≈ RJ
3 /GM( )

1/2

Since the surface density Σ ≈ M / RJ
2

tcoll ≈ RJ /GΣ( )1/2

Similar the timescale for a star to escape is:
tesc ≈ RJ /σ  where σ  is the velocity dispersion.
Thus collapse will occur if tcoll < tesc   or when:

RJ /GΣ( )1/2
< RJ /σ

The region will be stable if:
RJ <σ /GΣ

Now consider a rotating disk:
The local angular velocity is Oort's constant B 
and the region is stable if Fcent > Fgrav  and so

RB2 >GM / R2 =GΣ
Thus the criteria for stability is:
Rrot >GΣ / B2  or:
RJ > Rrot  or:
σ 2 /GΣ >GΣ / B2  or σB /GΣ >1
but since B =κ 2 / 4Ω and κ ≈1- 2Ω then B ≈ κ / 3
and our stability condition becomes

Q ≡
σ B
GΣ

≅
σκ
3GΣ

>1

Thus spiral structure can occur when:
Σ is high and σ  is low or B  is low.
In the solar neighborhood σ ≈  30 km/sec,
Σ ≈ 50 Msun /pc2,  κ ≈ 36 km/sec/kpc and so
Q ≈1.4 and locally stable
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Galactic Dynamics I: Disks Continued
• Comparison with Observations

– Density wave theory predicts perturbations 
near spiral arms

– Velocity perturbations of ~ 20 km/sec
– 2-d HI maps ideally sample gas response
– M81 maps with VLA (Westfall et al. ) show 

clear signature 
– Some galaxies don’t show classic two-armed 

spirals (flocculent) 
– Some other mechanism at work?
– Spiral features could be short-lived due to 

rotational shear (segments come and go)
– Self-propagating star formation?
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Galactic Dynamics II: Ellipticals
• The 3-d nature of elliptical galaxies 

complicates their dynamics
– Intrinsic shape originally thought to result from rotation
– Oblate: frisbee-like, Prolate: football-like
– Intrinsic shapes like neither but triaxial (oblate-like)
– Now we know that the shapes arise from non-isotropic 

velocity distribution functions
– Not surprising given their origin via mergers
– Direct evidence from shells and complex structure
– Some ellipticals don’t even have elliptical isophotes:
– Boxy: squareish isophotes, Disky: pointy isophotes
– Twisting isophotes direct signature of triaxial shape

We can parameterize isophote shape as a Fourier expansion:

R(φ) = a0 + an
n=1

∞

∑ cos(nφ)+ bn
n=1

∞

∑ sin(nφ)

a0  is the mean radius, a1,  b1  define center, a2,  b2  define ellipt. 
and pos. angle, a3  b3  measure asymmetries (dust), a4  defines 
boxyness or diskyness: a4 > 0 :  disky, a4 < 0 :  boxy.

• Rotation flattening predicts:
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Results suggest rotational support for low lum. Es 
but inconsistent with rotational support for luminous Es.
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Galactic Dynamics II: Analytic Models for Ellipticals
• Potential Theory

– Scalar nature of potential means we can add 
components.

– Relate density to potential via Poisson’s 
equation

– Density – potential pairs of analytic functions
– We can go back and forth via Poisson’s 

equation
(see Binney & Tremaine Ch. 4 for details)

Φ(r) = −G ρ(r ' )
r ' − rV

∫ d3r '   and  F(r) = −∇Φ(r)  with

∇⋅F(r) = −4πGρ(r)  and  ∇2Φ(r) = 4πGρ(r)
Some example density-potential pairs:
Point Mass (Keplerian Potential):
Φ(r) = −GM / r   so  F(r) = −∇Φ = −GM / r2

Vc
2 (r) =GM / r   and  Vesc

2 (r) = 2GM / r
Finite Homogenous Sphere 
(radius = a, ρ(r) = const for r < a):
r < a :Φ(r) = −2πρ(a2 − r2 / 3) so F(r) = −GM (r) / r2

r > a :Φ(r) =GM / r  (Keplerian)

Simple Harmonic Motion with Pr = 3π /Gρ( )1/2

Vc (r) = 4 / 3( )πGρ&' ()
1/2
r   (solid body rotation)

Logarithmic Potential (Flat Rotation Curve):

F(r) = Vc
2

r
= −

dΦ
dr

  so  Φ(r) =Vc
2 ln r + const.

Power Law Spherical Systems:

ρ(r) = ρ0 r / a( )−α   so  M (< r) = (4πGa3ρ0 )
(3−α)

r / a( )3−a

Φ(r) = − (4πGa2ρ0 )
(3−α)(α − 2)

r / a( )2−a
=Vc

2 / (α − 2)

Note: for α  > 3: M(< r) →∞ (infinite mass at center)
          for α  < 3: M(∞) →∞ (total mass diverges)
Special case of α  = 2: singular isothermal sphere:
Φ(r) = 4πGa2ρ0 ln(r / a)  and  Vc = (4πGρ0a

2 )1/2 = const.
More complex models include those of Hernquist and Jaffe:

ρH (r) = Ma
2πr(r + a)3

%

&
'

(

)
*   with  ΦH (r) = − GM

(r + a)

ρJ (r) =
Ma

4πr2 (r + a)2
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Plummer Sphere is analytic solution for hydrostatic equilibrium:

ρP (r) = 3M
4πb3
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  with ΦP (r) = − GM
r2 + b2( )
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Galactic Dynamics III: CBE Models for Ellipticals

Summing these is the net change within the region:

dxdvx
∂f
∂t
dt = −dtdxvx

∂f
∂x
dvx − dxdt

dvx
dt

∂f
∂vx

dvx

dividing by  dxdvxdt  gives:
∂f
∂t
+ vx

∂f
∂x
+
dvx
dt

∂f
∂vx

= 0

but since:
dvx
dt

= ax = −
∂Φ
∂x

 we have:

∂f
∂t
+ vx

∂f
∂x
−
∂Φ
∂x

∂f
∂vx

= 0

Adding in the y and z dimensions gives:
∂f
∂t
+
v ⋅∇f −∇Φ⋅ ∂f

∂
v
= 0

This is the collisionless Boltzman Equation.
Note that the phase space density is constant. As 
real space density increases so does σ  and vice versa.
By itself the CBE is not very useful. We need a way
to relate a model to observed quantities like density 
and velocity dispersion. We do this by taking moments
of the CBE.

First consider "collisionless" sysstems, i.e., no star-star 
interactions, only smooth background potential. The 
distribution function (DF) describes the phase space 
density: f(r,v,t)d3rd3v = number of stars at r with v at 
time t in the range d3r and d3v. If we treat the system 
as a fluid we can make use of the continutity equation:
The net flow in the x coordinate over interval dt is:

vxdtdvx[ f (x,vx, t)− f (x + dx,vx, t)]= −vxdtdvx
∂f
∂x
dx

The net flow from the velocity gradient is:

dx dvx
dt

dt[ f (x,vx, t)− f (x,vx _ dvx, t)]= −dxdt
dvx
dt

∂f
∂vx

dvx
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Galactic Dynamics III: Models for Ellipticals
• Models Built from Distribution Functions

– Alternative to Analytic Model for Potential 
– One of the best use of the CBE is to build a model 

from a distribution function.
– We’ll assume the distribution function is directly 

tied to the density distribution, i.e., stars are not just 
a tracer population.

Integrating the distribution function yields the potential:

4π f (r, v)d3∫ v = 4πGρ(r ) =∇2Φ(r ) assuming stars 

have a particular mass. Adopting a DF in energy (E) 
and angular momentum ( L ) and the spherical form of ∇2 :

1
r2

d
dr

r2 dΦ
dr

$

%
&

'

(
)= 4πG f v2

2
+Φ, r × v

$

%
&

'

(
)∫ d3v

We now at least have a self-consistent model. For a 
spherical, isotropic system the DF = f(E) only so:

1
r2

d
dr

r2 dΨ
dr

$

%
&

'

(
)= −16π 2G f (Ψ− v2 / 2)v2

0

2Ψ

∫ dv

where Ψ =Φ0 −Φ is the relative potential. This 
equation is the starting point for building a "simple" model.
Example1: Polytropic Sphere with power law f(Er ) :

For the one dimensional case if take the 0-th moment 
by integrating the CBE over all vx :

∂n
∂t
+
∂ n vx( )

∂x
= 0 with n ≡ n(x, t) being the space 

density of stars and vx  being the average velocity 
along x. If we multiply the CBE by vx  and integrate 
over all vx  (1-st moment) and using the equation above 
we get:

∂ vx
∂t

+ vx
∂ vx
∂x

= −
∂Φ
∂x

−
1
n

∂ nσ x
2( )

∂x
In three dimensions this becomes the Jeans Equation:

∂ vj
∂t

+ vi
∂ vj
∂xi

= −
∂Φ
∂x j

−
1
n

∂ nσ i, j
2( )

∂xi
This is similar to Newton's 2-nd law but with nσ i, j

2

as a stress tensor analogous to an anisotropic pressure.
For a spherical, steady-state system (1-st term 0) we have:

1
n

d nσ r
2( )

dr
+

1
r

2σ r
2 − (σθ

2 +σφ
2%& '(−

vφ
2

r
= −

dΦ
dr

Introducing anisotropy parameters: βθ =1−σθ
2 /σ r

2  and 

βφ =1−σφ
2 /σ r

2  and using 2β = βθ +βφ  and Vrot = vφ

1
n

d nσ r
2( )

dr
+ 2β σ r

2

r
−
Vrot

2

r
= −

dΦ
dr
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Galactic Dynamics III: Models for Spirals
Mestel's Disk:
Σ(r) = Σ0 (r / r0 )  with  Vc

2 (r) = 2πGΣ0r0 = const.
Exponential Disk:
Σ(r) = Σ0e

−r/rd   where rd  is the disk scale length with:
Vc

2 (r) = 4πGΣ0rd y
2 I0 (y)K0 (y)− I1(y)K1(y)[ ]

where y = r
2rd

 and In   and  Kn  are Bessel functions 

of the 1-st and 2-nd kind. Another disk pair is that of 
Kuzmin:

ΣK (r) = aM
2π (r2 + a2 )3/2   with  ΦK (r, z) = − GM

r2 + (a+ z )2

Toomre disks are a series derived by differentiating 
Kuzmin disks (n=1: Kuzmin disk, n=∞: Gaussian disk):

ΣTn (r) =
d
da
%

&
'

(

)
*
n−1

ΣK (r)  with  ΦTn
(r, z) = d

da
%

&
'

(

)
*
n−1

ΦK (r, z)

For a spiral galaxy we could add the potentials of a 
bulge and a disk but we might also consider flattened 
potenitals. Miyamoto-Nagai proposed:

ρM (r, z) = Mb2

4π
%

&
'

(

)
*
ar2 + (a+3B)(a+B)2

[r2 + (a+B)2 ]5/2B3   with  

ΦM (r, z) = − GM
r2 + (a+B)2

  and  B2 = z2 + b2

Note that these reduce to a plummer model if a = 0 
and to the Kuzmin disk if b = 0
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