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Galactic Dynamics I: Disks Continued

Galactic Disk Dynamics
— Importance of Resonances

If stars undergo periodic perturbation at same phase
in orbit
Similar to asteroids and Jupiter

Spiral pattern requires solid-body rotation and sprials
have flat rotation curves

Solution to the “winding problem” is to have the spiral
be a wave propagating through the disk

Star pass through the arms and vice versa

A pattern that rotates with Q, = Q — k/2 will rotate as
almost a solid body (€2,)

Spiral structure will exist for ILR <R < OLR

ILR: Q, = Q% - /2, OLR: Qp = Q* +x/2

Outside that regions the stars are out of phase with the
pattern and spiral density waves cannot exist

Within CR (co-rotation) stars lead pattern, outside CR
the pattern leads the stars (see dust lanes in M51)

Derivation of Density Wave Theory
— Rather complicated and lengthy

Start with hydrodynamic equations and continuity
equation

Assume a spiral form for the density perturbation
Show that the response of a star is an epicyclic orbit

— I 'will write something up after spring break

radius R/a,



Galactic Dynamics I: Disks Continued

Galactic Disk Stability

—  Absolutely cold disk will gravitationally collapse

—  Stellar velocity dispersion inhibits collapse
— Differential rotation (shear) inhibits collapse

—  Toomre (1964) specifies conditions for disk stability via a

Jeans argument:

Consider an overdense region of radius R, in a
non-rotating disk:
The timescale for collapse:

R

foom N _(RPGM)”
coll (GM/RJ)M (J )

Since the surface density S~ M / R}
toy ~(R,1GZ)"

Similar the timescale for a star to escape is:
t.. =R, /o where o is the velocity dispersion.

Thus collapse will occurif 7, <, or when:
(R,/1G2)" <R, /o

The region will be stable if:

R, <o /GX

Now consider a rotating disk:
The local angular velocity is Oort's constant B

and the region is stable if F,,, > F,,, and so
RB*>GM /R =G=

Thus the criteria for stability is:

R _>GZ/B’ or:

R,>R , or:

0’ /GZ>GZ/B? or 0B/GZ>1

but since B=x>/4Q and k =1-2Q then B~k /3

and our stability condition becomes
0218l ox

GZ 3Gz
Thus spiral structure can occur when:
2 is high and o is low or |B| is low.

In the solar neighborhood o = 30 km/sec,
2=50M /pcz, K = 36 km/sec/kpc and so

sun

Q =1.4 and locally stable
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Comparison with Observations

—  Density wave theory predicts perturbations
near spiral arms

—  Velocity perturbations of ~ 20 km/sec
—  2-d HI maps ideally sample gas response

—  MBS81 maps with VLA (Westfall et al. ) show
clear signature

—  Some galaxies don’t show classic two-armed
spirals (flocculent)

—  Some other mechanism at work?

—  Spiral features could be short-lived due to
rotational shear (segments come and go)

—  Self-propagating star formation?




Galactic Dynamics I1: Ellipticals

The 3-d nature of elliptical galaxies
complicates their dynamics
—  Intrinsic shape originally thought to result from rotation
- Oblate: frisbee-like, Prolate: football-like
—  Intrinsic shapes like neither but triaxial (oblate-like)

—  Now we know that the shapes arise from non-isotropic
velocity distribution functions

—  Not surprising given their origin via mergers

—  Direct evidence from shells and complex structure
- Some ellipticals don’t even have elliptical isophotes:
—  Boxy: squareish isophotes, Disky: pointy isophotes
—  Twisting isophotes direct signature of triaxial shape

We can parameterize isophote shape as a Fourier expansion:

R(@)=a, + ian cos(ng)+ ibn sin(ng)

a, 1s the mean radius, a,, b, define center, a,, b, define ellipt.

and pos. angle, a, b, measure asymmetries (dust), a, defines

boxyness or diskyness: a, >0: disky, a, <0: boxy.
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* Rotation flattening predicts:
1-b/a

)
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To compare with observations define:

o) () )]
o o obs o expect o obs 1_8

Results suggest rotational support for low lum. Es
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but inconsistent with rotational support for luminous Es.
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Galactic Dynamics II: Analytic Models for Ellipticals

Potential Theory

—  Scalar nature of potential means we can add
components.

— Relate density to potential via Poisson’s
equation

— Density — potential pairs of analytic functions

—  We can go back and forth via Poisson’s
equation

(see Binney & Tremaine Ch. 4 for details)

(r)=-G [ ‘f(_rr) r and F(r)=-V®(r) with

V-F(r)=-4aGp(r) and V’®(r)=4nGp(r)
Some example density-potential pairs:

Point Mass (Keplerian Potential):

®(r)=-GM /r so F(r)=-V®=-GM /r*
V:r)=GM /r and V. (r)=2GM /r

Finite Homogenous Sphere

(radius = a, p(r) = const for r < a):
r<a:®(r)=-2mp(a’-r’/3)so F(r)=-GM (r)/r’
r>a:®(r)=GM /r (Keplerian)

172

Simple Harmonic Motion with P, = (37 /Gp)
V.(r)=[(4/3)2Gp]" r (solid body rotation)

Logarithmic Potential (Flat Rotation Curve):

V: 4o

F(ry=—+%--= o so ®(r)=V?Inr+const.
r

r
Power Law Spherical Systems:

p(r)=p,(r/a)” so M(< r)=%(r/a)3_a
_M(r/a)“ =V /(a=2)
B-a)a-2)

Note: for o > 3: M(<r) — oo (infinite mass at center)

D(r) =

for o < 3: M(o0) — oo (total mass diverges)
Special case of o = 2: singular isothermal sphere:
O(r)=4xGa’p,In(r/a) and V, =(4aGp,a’)"* = const.

More complex models include those of Hernquist and Jaffe:

Ma . GM
r)y=| —— | with ®,(r)=-
Pur) (Zm’(r+a)3) n(r) (r+a)
Ma GM r
p,(r) (47rr2(r+a)2) (1) a (r+a)
Plummer Sphere is analytic solution for hydrostatic equilibrium:
-5/2
3M r’ . GM
N=l——=|l1+—= with @, (r) = ———
pP( ) (4]’[[93)( bz) P( ) \/m



Galactic Dynamics II1:

*  Derivation of the Collisionless Boltzman
Equation
— Consider the crossing times:
t~ —, For a uniform sphere:

’GM _ 3M _ [ 3 8
- V= = P= 4nR:,‘,t— m,~10 years

—  For two stars to encounter each other at
sufficiently small impact parameter to
significantly change their velocities is the two
body relaxation time:

rezax~(—) 1/2 m ~10°? years for globular clusters

and ~ 1012 years for galaxies, so what is the
mechanism?

First consider "collisionless" sysstems, i.e., no star-star
interactions, only smooth background potential. The
distribution function (DF) describes the phase space
density: f(r,v,t)d’rd’v = number of stars at T with V at
time t in the range d’r and d’v. If we treat the system
as a fluid we can make use of the continutity equation:

The net flow in the x coordinate over interval dt is:
vdedv [ f(x,v ,t)- f(x+dx,v_t)]=-v dtdv, 2idx
X

The net flow from the velocity gradient is:

ax P g f v 0 - flev, _dv i) = —dxdt P gy,
dr a v

X

CBE Models for Ellipticals

Summing these is the net change within the region:
daxav. L ar — —araxe. L av — axar L= gy
ot dx dt dv,
dividing by dxdv dt gives:
% +Vv, i + %i =0
ot ox dt Jv,

but since:

dv oD
£ =a_=-——— we have:
dt ox

o, 9P _,

ot ox Ox Jv,

Adding in the y and z dimensions gives:
af V- af _0

at ov

This is the collisionless Boltzman Equation.

Note that the phase space density is constant. As

real space density increases so does o and vice versa.
By itself the CBE is not very useful. We need a way

to relate a model to observed quantities like density
and velocity dispersion. We do this by taking moments
of the CBE.



Galactic Dynamics II1: Models for Ellipticals

For the one dimensional case if take the O-th moment
by integrating the CBE over all v :

on_3(n{v))
ot 0x
density of stars and <vx> being the average velocity

=0 with n = n(x,t) being the space

along x. If we multiply the CBE by v_and integrate

over all v_ (1-st moment) and using the equation above

we get:
W) g2 o0 _10s)
ot 0x ox n 0x

In three dimensions this becomes the Jeans Equation:

ov) >M= 0@ _19(n07)

ot + “ox, n

1

ox, ox; n 0x
This is similar to Newton's 2-nd law but with naf i

as a stress tensor analogous to an anisotropic pressure.

For a spherical, steady-state system (1-st term 0) we have:

’ r dr
Introducing anisotropy parameters: 3, =1-0, /o, and

B,=1-0, /0] and using 2=, + B, and V,, =(v,)

rot

rdfo) 1

n dr r

02—(0§+02]—M a®

1d(no7) | vop Ve O
n dr r dr

Models Built from Distribution Functions

— Alternative to Analytic Model for Potential

—  One of the best use of the CBE is to build a model
from a distribution function.

—  We’ll assume the distribution function is directly
tied to the density distribution, i.e., stars are not just
a tracer population.

Integrating the distribution function yields the potential:
47 f fF V)Y = 47G p(F) = V>D(F) assuming stars
have a particular mass. Adopting a DF in energy (E)

and angular momentum (|L|) and the spherical form of V*:

1d{ ,dd v
— |=4aG

r’ dr( dr ) f f( 2

We now at least have a self-consistent model. For a

spherical, isotropic system the DF = f(E) only so:
2w

14 (r2 dqj)=—16ﬂ2G [ r@-v? 72y

r? dr o

where W = ® — @ is the relative potential. This

dr

equation is the starting point for building a "simple" model.

Examplel: Polytropic Sphere with power law f(E):



Galactic Dynamics II1: Models for Spirals

Potential Theory for disks

—  Not relevant to ellipticals but this is aa good a place
for it as any.

—  Disks are generally more complicated since lack of
spherical symmetry means mass atr > r,
contributes

—  As before we might search for analytic density-
potential pairs (see right-hand panel)

Poisson’s Equation (Gauss’ Law for Mass):
V3¢ = 4AnGo

Another approach is to use the distribution of

stars in phase space to fully describe the system.

This approach doesn’t require an assumption of a
steady state. We can include two-body relaxation
and other dissipative phenomena to evolve the
system over time. The downside is that it is a bit
mathematical. But with cylindrical symmetry the

Collisionless Boltzman Equation Becomes:

3¢

Mestel's Disk:
3(r)=2,(r/r,) with V2(r)=2aGZr, = const.
Exponential Disk:

S(r)=ZX,e”" where r, is the disk scale length with:
VLZ(’,) = 4-77:G20rdy2 [Io (y)Ko(y) - Il (y)Kl (y)]

where y = 2L and /, and K, are Bessel functions
Ta

of the 1-st and 2-nd kind. Another disk pair is that of

Kuzmin:
aM ) GM
2 (r)= 7 With ®K(raz)=_ﬁ
2a(r-+a”) r +(a+|z|)

Toomre disks are a series derived by differentiating

Kuzmin disks (n=1: Kuzmin disk, n=c0: Gaussian disk):

2, (n= (i) ) 2.(r) with @, (r,z)= (i) D, (r,2)
" da " da

n-1

For a spiral galaxy we could add the potentials of a
bulge and a disk but we might also consider flattened

potenitals. Miyamoto-Nagai proposed:

Mb*\ar* +(a+3B)(a+B)* .
r,z7)= with
Pu(2) ( 47 ) [r’ +(a+B)'T"” B’
D, (r,7)=- M and B> =z"+b"

Jr’* +(a+B)

Note that these reduce to a plummer model if a =0

and to the Kuzmin disk if b=0 8
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Figure 2-6. Contours of equal density in the (R, z) plane
for the Miyamoto-Nagai density distribution (2-50b) when:
b/a = 0.2 (top); b/a = 1 (middle); b/a = 5 (bottom). Contour
levels are: (0.3,0.1,0.03,0.01,...)M/a3 (top); (0.03,...)M/a®
(middle); (0.001,...)M/a® (bottom).



