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Galactic Dynamics I: Disks

* Galactic Dynamics

— Two Body Problem Overview

— Subject is complex but we will hit the highlights

Our goal is to develop an appreciation of the subject which we can use to interpret observational data
See Binney & Tremaine and references therein for a full treatment of the subject

— Distribution of mass determines gravitational acceleration on each star

Acceleration at each 3d point and 3d velocity constitutes 6 parameters in phase space which define
the motion of each star at one point in time

We need to integrate these over time to determine stellar trajectory (orbit)
Following 10!! stars via an N-body simulation is currently impossible

— Instead let’s consider analytic models

Distribution of stars reflects their orbital trajectories over a long time interval.

So we assume a steady state for now

* Disk galaxies
— Key concepts include

Circular motion

Deviations from circular motion
Resonances

Density Waves

Instabilities
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This lecture summarizes the two body problem from classical mechanics but from the
perspective of potential theory. Good references are Thornton & Marion (ch. 8) and
Goldstein, Poole and Safko (ch. 3). We assume that two point masses are moving under
the influence of a mutual central force.

* The Equivalent One-body Problem — the Reduced Mass

Consider a system of two point masses, m; and m, with the potential energy (U) being
only a function of the separation between the two masses: r = |r;-1,|. In terms of the
Lagrangian:

1 : 1 :
L = Smy|ry*+ Smgy |72 + UQ)

Placing the origin at the center mass allows us to consider the relative motion (r = r;y +
Tz):

myr; + myr, = 0 such thatry = my

my

andrp, = r. The Lagrangian then
mq+my mq+my
. 1 1.2 __ mqmy .
becomes: L = E“lrl — U(r) where u = — s the reduced mass.
2



* Conservation Theorems are known as Integrals of Motion
The first is the conservation of momentum:
L = r Xp = const. If we write the Lagrangian in polar coordinates we have:

L= % u(7? + r292)2 — U(r) but the angular momentum in the 6 coordinate is

conserved:

oL d oL dL 22
=%=O=E£ and so p9=£=ur 6 = const.

The quantity p, is known as the first integral of motion and is usually denoted as

[ and thus: [ = ur?6 = const. This is interpreted in terms of the area swept out over
: 1 dA 1 _,d6 1 54 I
aninterval dt: A = =720 andso — = -r?— = =r?0 = — = const. so that the
2 dt 2 dt 2 2u
areal velocity is constant in time (Kepler’s Second Law of Planetary motion). Another

first integral of motion comes from the conservation of the total energy:

Do

. 2
T =U = E = const. withE = %u(‘i‘z +7120%)+U(r) or: E= %m’*z + %‘%+
U(r). All that is needed is the form of U(r ) and integration yields r as a function of £

and /.



The Equations of Motion
Solving the above equation for 7 yields:

. dr _ 2 _ _i
T—E—\/#(E U) 2

de dt

. . 0 . : .
Since we can write df = E;dr == dr we then substitute 8 = /W2 and the above for © we have:

(,2)ar

12
\/“(’*”‘m)

And together these are the equations of motion. However, this is not a particularly useful form, 6(t)
is preferred as we will see below. Note that above we combined conservation of energy with
conservation of momentum but we need the form of the potential in order to solve the problem. Put
another way, we need to know the form of the force law F(r) « r™ and analytical solutions are
present only for n = 1, -2, -3. Another approach to deriving the equations of motion makes use of
Lagrange’s equation (see Marion and Thorton) and this is useful for determining F (r) given an orbit,
r(0). One interesting result of this equation is the question of when orbits are closed. Since:

l
o = 2 [t

T'min 12
2u(E-U5)

In order for the orbit (path) to be closed A8 needs to be a multiple of 2rr. Specifically:

o(r) = [

AO =21 % where a and b are integers (the orbit can be like a Lissajous figure). This concept is

central to the idea of orbital resonance.



Orbits in a Central Field

We now continue to follow the traditional approach and consider orbits in a central field. Recall:
Lo dr |2, _ i
r = E = \/; (E U) =

Thus 7 will be zero at the “turnaround radii”, r,;, and r

This will occur when:

max.
2

E-U(r) - 2‘37 = 0. Note that for certain values of E, U(r) and / only a single value of r is allowed (single root) and

the orbit is then circular.

Centrifugal Energy and the Effective Potential

Recall that:
12 _ 1 24
2ur? il o
If we interpret this as a “potential energy” or an effective potential:
12 ) au, 12 "9
U, = Z? then the corresponding force would be F, = — i uré

or the centrifugal force. We next introduce the idea of an effective potential:

12
Vir)=U() + T2
For the gravitational potential U(r) = — é we then have:
k12
V(T‘) - + 2ur?

Thus, we see that if the total energy is negative the particle is bound within the

“turning points” and if the total energy is positive it is unbound.



Energy

Effective Potential Defines Orbit

Orbits Are Not Ellipses Unless the Potential is ~ 1/R

For a Given Angular Momentum An Orbit is Limited by the “Turning
Points” (Rpin <R < Rpax)

Energy
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Consider the properties of stellar orbits in the disk of the

st VR)=V, AV=VR,) - VR)

Milky Way T SN ~ AR x dV/dR
Iy V(R) ~rcos /xdV/dR

—  Orbits are approximately circular but not precisely so let’s R
see what information is available L2 N

— Jan Oort parameterized stellar orbits in the following way:

0= VR o
Let the radial and tangential velocites of a star be: R | [R '
Fig 2_shows the
V. = Arsin2l < Do emmd
r ~ .
I Do

Vt = Br+ Arcos?2! ~rcos!/ ~}\I.o.s. (blue), which is

\\ what we witness.
where A and B are the Oort constants given by:

A;(&_d%) =_1R(d_9)
2\R dR), 2 \dR),

1(v dv) 1 (dQ 29)
B=——|-¢4c| =—_R|—2422
2\R dR);, 2 \dR R,

GC

Fig 1 shows the global situation: a circular
rotation velocity field of amplitude V(R) about

the GC with the sun at S. Consider a star at
galactic longitude /, distance r from the sun: it
i:?;i?;sﬁs: g;;"g,z; g‘;[‘_\‘he{h(;i"ﬁ: g and transverse (v, : proper motion) to the line of

* Ais a measure of the local radial gradient of the circular velocity, velosity. It i loser fo the GC by AR = cos | o ool mrsndiouat oo

5 5 parallel and perpendicular to the solar
and differs in V by ARxdV/dR.
the shear

Fig 3 zooms into the difference velocity (blue).
We want to find its projection parallel (v,: doppler)

velocity (amplitudes AV and 8V.).
* B is a measure of the local vorticity (curl)
* Hipparcos yields: A =14.8 +- 0.8 km/s/kpc, B =-12.4 +- 0.6
km/s/kpe
¢ Combining them gives some insight into local stellar orbits:

A+B= (dVC ) =+2.4 km/s/kpc (flat rotation curve)
Ro

A-B= (%) = Q(R,)=27.2 km/s/kpc (P = 27/Q(R,)= 230 Myr
Rﬂ

When combined with a measure of Ry = 8kpc:

V(Ry) =218 (Ry/8 kpc) km/s
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Consider small perturbations from circular orbits

The velocity will be almost unchanged as star is perturbed
radially but the small change is significant
Result is an elliptical orbit with a >R
Angular momentum must be conserved:

¢ Asrincreases, V must decrease and vice versa
Stars perturbed initially outward will fall behind those on
circular orbit

*  Fgay > Feene 50 stars moves back in

Stars perturbed initially inward will lead those in circular
orbit

*  Fygray < Feene S0 star moves back out
The cycle repeats and so elliptical orbit can be modeled as
an epicycle centered on the guiding (circular) orbit.
We define and angular velocity for the epicycle k and it is
retrograde.

For a Keplerian potential (orbit about point mass) we have:

*  Q,=x,and so the orbit is a closed ellipse

This is not true in general and so the orbits are not closed
*  Unless we consider a rotating frame with

*  Q=Q,-1/2x, then orbits are closed ellipses centered on galaxy

» If we have a phase shift of these orbits with radius we see a
spiral-like pattern similar to that seen at the right.

Now we have a dynamical method for producing spiral arms

e 1 50 v,
LL r V(p const So lags behind
F_ or”
grav i /\ B> Fa
F,=v /rx 1‘73 So pulled inwards
cf V¢

F F | Retrograde Epicycle
g < Fer ——7 ! frequency x
So moves outwards

|
r| so v¢1‘ /}/

So moves forward

Guiding center
Fgm\ =F

|
| stationary

@ (in rotating frame)

|
Frame rotates with
Guiding center
Frequency Q

d < Center of orbit

(a) ()

Figure 6-11. Arrangement of closed orbits in a galaxy with {2 — %;c independent of R
radius, to create bars and spiral patterns (after Kalnajs 1973).
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Dynamical basis for epicyclic motion of disk stars

Consider the potential of a flattened, axisymmetric disk:

®(R,z). Since angular momentum is conserved (no
azimuthal forces):

i=-V®(R,z) and L. =R’$=const.
For cylindrical coordinates (R, ¢, z):

B-rp? =-2% and 222 Wi L)-=0
OR 0z dt

Note the centrifugal acceleration term.
Consider z motions about the plane:

() . S . .
((Z—) =0 since the disk is continuous and symmetric about z = 0
< z=0

If we expand the z-force for small z (linear terms):

. oD RO R > , [0°D
i==|—| -z|= =-7|— =-v°z where v’ =| —
0z z=0 0z z=0 0z z=0 9z z=0

This is the equation of motion for symple harmonic motion with

frequency v and the solution is:

2(t)=Zcos(vt+,)

For the Milky Way near the sun, v’ = 41Gp, or v =~ 0.096Myr™'
So the vertical oscillation period (27 /v)=~ 6.5x 10" yr = 1/3 Q
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Now consider the radial motions about the circular
guiding (reference) orbit:

oD v? )
(3), -
RK

R R,
0
For non-circular orbits the equation of motion is:
. B10)) 0.2+4
R=R¢p* - —
aR 0.4
We can also write this interms of the angular momentum: ‘
.. od I’ . . 0.6+
R=-—%= where @, =®(R,2)+—5 since L, =R’¢
R 2R '
We can plot @, to ilustrate the sharp rise at small r and the 0T
. . 1 . P
slow rise at large R. The minimum occurs at the guiding orbit: i
2
aq)t?ﬁ‘ =0= @ -R (1'52 — @ _ Vc Figure 3.7 Effective potential ®.¢ (upper curve) for a star with angular momentum
IR < oR /, §TE oR /. Rg L, = 0.595, orbiting in a Plummer potential ®p (lower curve). The scale length ap = 1;
8 8 8

) ) ) L, is in units of /G Map; units for ® and ®.¢ are GM/ap. The vertical dashed line
For some small perturbation x consider the potential at R = R + X:  marks the guiding center Ry; the star oscillates about R, between inner and outer limiting

i 9D 62(1) azq) radii.
R=i=- @ —x ;ﬁ =-X ;ﬁ =KX
R /. oR oR
: R, R,

Once again this is the equation of simple harmonic motion about R, :

x(t) = X cos(kt+¢,) where ﬁ:(ﬂ) =(i(%)) +3_L§ or

oR* OR\OR R*
2
K= RdQ +4Q7
dR

8

Ry

10



Galactic Dynamics I: Disks

Now consider the azimuthal motions about the
circular guiding (reference) orbit:

Since:

L. =R’Q, = const., changes in R yield changes in Q:

_¢}=L_z2=%zL_g(1_2_x =Q, pﬁ)
R® (R, +x)" R, R, R,
Integrating yields:
2Q.X | .
P(1)=Q,1 - 2 sin(kt + ¢,)
8

Thus, ¢ follows the guiding orbit with small amplitude SHM
suprposed. If we let y be the azimuthal perturbations:

2Q
y(t)=-—-=Xsin(xt +¢,) and so the frequency x is that same
K

as in x (radial direction) but out of phase by 90°. Together:
x(t) = X cos(kt)

2Q
y(t)=-—=Xcos(xt) assuming ¢, =0
K

Some properties are:

- elliptical epicycle with radial/azimuthal = k/2€2
- retrograde epicyclic motion

For a Keplerian potential: k = Q (closed ellipses)
For flat rotation curve: k = +/2Q

For solid body rotation: k¥ = 2Q (closed oval orbits)

Near the Sun we predict:

K, =-4B(A-B)=-4BQ, where k, =37 km/s/kpc and
Q,=A-B=27 km/s/kpc

This corresponds to k,, / 2, = 1.3 (stars make 1.3 cycles per orbit) and
since Kk, /29, = 0.7 then epicycles have radial/azimuthal = 0.7

The observed velocity ellipsoid at R, = R; is:

o,/0,=K,/29,=0.7 in good agreement, but:

o, l0,=2Q,/Kk,=1.5 because there are more stars at smaller R
This results in about 1 kpc excursions in R. Similarly, for z:

o, = 30 km/s with v =0.096 Myr™" with excursions of about 300 pc.

Q =10 «=1.3 Qf=Qg—K/1.3




