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Astr 5465 Mar. 11, 2020
Galactic Dynamics I: Disks

• Galactic Dynamics 
– Two Body Problem Overview
– Subject is complex but we will hit the highlights

• Our goal is to develop an appreciation of the subject which we can use to interpret observational data
• See Binney & Tremaine and references therein for a full treatment of the subject

– Distribution of mass determines gravitational acceleration on each star
• Acceleration at each 3d point and 3d velocity constitutes 6 parameters in phase space which define 

the motion of each star at one point in time
• We need to integrate these over time to determine stellar trajectory (orbit)
• Following 1011 stars via an N-body simulation is currently impossible

– Instead let’s consider analytic models
• Distribution of stars reflects their orbital trajectories over a long time interval.
• So we assume a  steady state for now

• Disk galaxies
– Key concepts include

• Circular motion
• Deviations from circular motion
• Resonances
• Density Waves
• Instabilities
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Effective Potential Defines Orbit
• Orbits Are Not Ellipses Unless the Potential is ~ 1/R
• For a Given Angular Momentum An Orbit is Limited by the “Turning 

Points” (Rmin < R < Rmax)
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Galactic Dynamics I: Disks
• Consider the properties of stellar orbits in the disk of the 

Milky Way
– Orbits are approximately circular but not precisely so let’s 

see what information is available
– Jan Oort parameterized stellar orbits in the following way:

Let the radial and tangential velocites of a star be:
Vr = Arsin2l
Vt = Br + Arcos2l
where A and B are the Oort constants given by:
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• A is a measure of the local radial gradient of the circular velocity, 
the shear

• B is a measure of the local vorticity (curl)
• Hipparcos yields: A = 14.8 +- 0.8 km/s/kpc, B = -12.4 +- 0.6 

km/s/kpc
• Combining them gives some insight into local stellar orbits:

A+B = dVc
dR
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= +2.4 km/s/kpc  (flat rotation curve)
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=Ω(R0 ) = 27.2 km/s/kpc (P =  2π /Ω(R0 ) =  230 Myr

When combined with a measure of R0 = 8kpc:

Vc(R0) = 218 (R0/8 kpc) km/s
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Galactic Dynamics I: Disks
• Consider small perturbations from circular orbits

– The velocity will be almost unchanged as star is perturbed 
radially but the small change is significant

– Result is an elliptical orbit with a > R
– Angular momentum must be conserved:

• As r increases, V must decrease and vice versa

– Stars perturbed initially outward will fall behind those on 
circular orbit
• Fgrav > Fcent so stars moves back in

– Stars perturbed initially inward will lead those in circular 
orbit
• Fgrav < Fcent so star moves back out

– The cycle repeats and so elliptical orbit can be modeled as 
an epicycle centered on the guiding (circular) orbit.

– We define and angular velocity for the epicycle k and it is 
retrograde.

– For a Keplerian potential (orbit about point mass) we have:
• Wg = kg and so the orbit is a closed ellipse

– This is not true in general and so the orbits are not closed
• Unless we consider a rotating frame with
• W = Wg – 1/2 kg then orbits are closed ellipses centered on galaxy
• If we have a phase shift of these orbits with radius we see a 

spiral-like pattern similar to that seen at the right.

– Now we have a dynamical method for producing spiral arms
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Galactic Dynamics I: Disks
• Dynamical basis for epicyclic motion of disk stars
• Consider the potential of a flattened, axisymmetric  disk: 

F(R,z). Since angular momentum is conserved (no 
azimuthal forces):

r = −∇Φ(R, z)  and  Lz = R
2 φ = const.

For cylindrical coordinates (R, φ, z):

R− R φ 2 = −
∂Φ
∂R

  and  z = −∂Φ
∂z

  with  d
dt

(Lz ) = 0

• Note the centrifugal acceleration term.
• Consider z motions about the plane:
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= 0  since the disk is continuous and symmetric about z = 0

If we expand the z-force for small z (linear terms):
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This is the equation of motion for symple harmonic motion with 
frequency ν  and the solution is:
z(t) = Z cos(νt +ψ0 )
For the Milky Way near the sun, ν 2 = 4πGρ0  or ν ≈ 0.096Myr−1

So the vertical oscillation period (2π /ν ) ≈  6.5 x 107  yr ≈  1/3 Ω
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Galactic Dynamics I: Disks
• Now consider the radial motions about the circular 

guiding (reference) orbit:
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For non-circular orbits the equation of motion is:

R = R φ 2 −
∂Φ
∂R

We can also write this interms of the angular momentum:

R = −
∂Φeff

∂R
  where  Φeff =Φ(R, z)+ Lz

2

2R2   since Lz = R
2 φ

We can plot Φeff  to ilustrate the sharp rise at small r and the 
slow rise at large R. The minimum occurs at the guiding orbit:
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For some small perturbation x consider the potential at R =  R +  x :
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Once again this is the equation of simple harmonic motion about Rg :

x(t) = X cos(κt +φ0 )  where κ 2 =
∂2Φeff
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Galactic Dynamics I: Disks
• Now consider the azimuthal motions about the 

circular guiding (reference) orbit:

Since:
Lz = R

2Ωg =  const., changes in R yield changes in Ω:

Ω = φ =
Lz
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Integrating yields:
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 Thus, φ  follows the guiding orbit with small amplitude SHM 
suprposed. If we let y be the azimuthal perturbations:

y(t) = −
2Ωg

κ
X sin(κt +φ0 )  and so the frequency κ  is that same 

as in x (radial direction) but out of phase by 90o. Together:
x(t) = X cos(κt)

y(t) = −
2Ωg

κ
X cos(κt)  assuming φ0 = 0

Some properties are:
⋅ elliptical epicycle with radial/azimuthal = κ /2Ω
⋅ retrograde epicyclic motion
For a Keplerian potential: κ  = Ω (closed ellipses)

For flat rotation curve: κ  = 2Ω
For solid body rotation: κ  = 2Ω (closed oval orbits)

Near the Sun we predict:
κ0

2 = −4B(A−B) = −4BΩ0   where κ0 = 37 km/s/kpc and 
Ω0 = A−B = 27 km/s/kpc
This corresponds to κ0 /Ω0 ≈1.3 (stars make 1.3 cycles per orbit) and 
since κ0 / 2Ω0 ≈ 0.7 then epicycles have radial/azimuthal ≈ 0.7
The observed velocity ellipsoid at Rg = R0  is:
σ R /σφ =κ0 / 2Ω0 ≈ 0.7  in good agreement, but:
σ R /σφ = 2Ω0 /κ0 ≈1.5 because there are more stars at smaller R
This results in about 1 kpc excursions in R. Similarly, for z:
σ z ≈ 30 km/s with ν ≈ 0.096 Myr−1  with excursions of about 300 pc.


