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Astr 5465 Mar. 11, 2020
Fourier Techniques in Astronomy

• Background
– Fourier Theorm: any function can be expressed as an infinite sum of basis vectors: sines & cosines
– Fidelity of the Model is Better the More Frequencies are Used

• Fourier Transform of a Function (or Signal) is a Series of Amplitudes for the Basis Vectors
• See Bracewell for Examples of Simple Functions and Their Fourier Transforms

– Pixelated Data Segment Contains Natural Low and High Frequency Cut-offs
• Sampling Theorm Says There is No Information on Scales Smaller Than 2 pixels (highest frequency)
• If the Data Segment (or Stream) is Limited Its Extent Limits the Lowest Frequency Sampled

– FFT: Fast Fourier Transform for Digital Data
• See numpy.fft.fft and Various Examples via Googling

• Astronomical Spectroscopic Data
– Spectra & Spectral Lines Can be Modeled via a Set of Sines & Cosines
– Finite Resolution of the Instrument Blurs the “True” Signal
– If Spectrum is Resampled in Log Wavelength First a Shift Corresponds to a Velocity
– Time Series of Spectra Can Be used to Measure Velocity Shift of Binary Star
– Fourier Methods Use all the Data as Opposed to Measuring Position of a Single Spectroscopic Line
– Velocity Dispersion (in say a galaxy) Acts as a Smoothing or Blurring of an Otherwise Sharp Spectrum

• Astronomical Imaging Data
– Concept Can be Expanded to 2-d Imaging Data

• Seeing or Finite Resolution of the Telescope Acts to Blur Astronomical Images
• Information is Still Present and Can (in principle) be Recovered
• Example: a Single Star Can be Used as a Reference to Recover Signal of Close Binary Star



Consider an Astronomical Spectrum
• Consider Example Spectrum (B&W) & Its Fourier Transform
• Spectrum Can Be Approximated with a Series of Sines & Cosines
• Finite Resolution of the Instrument & Discrete Pixel Sampling Results in a

Cutoff Frequency (limiting information at smallest scales, i.e., highest 
frequencies)

• Real Data Has Noise (photon noise from signal, read noise of detector, etc)
• Noise is Present at the Highest Frequencies (pixel-to-pixel for digital data)
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Example of Ideal Line Profile

• True Spectrum is Convolved 
(smoothed) by the Instrument’s
Resolution (Apparatus)

• Since a Convolution in Real
Space is a Multiplication in
Fourier Space
– Record Apparatus Function (e.g., 

comparison lines) 
– Divide it Into Data in Fourier Space
– Inverse Transform to Recover

Restored Profile

• Velocity Field of Elliptical 
Galaxies Acts Like an 
Apparatus (blurring) Function 
to the Spectrum of a Giant Star
– Dividing the Spectrum by a Giant 

Star’s Spectrum in Fourier Space
– Transforming Back Recovers the

Velocity Field (blurring function)
– Fit this with Gaussian for Velocity

and Velocity Dispersion
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What About Real Spectrum with Noise?

• Fourier Transforms 
Amplify Noise into all 
Pixels
– Note Frequency Cutoff in
– Pure Data
– Random Noise Means

Noise at all Frequencies
– “White Noise” Means 

Equal Power at all 
Frequencies

– Fourier Transform
Shows ”Noise Signal”
Extending to High
Frequencies

– Inverse Transform
Distributes this Noise into
all Spatial Scales!
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Solution is Noise Filtering

• Instrumental Profile and Pixel 
Sampling (sampling theorm) Provides 
High Frequency Cutoff

• If we Construct a Soft-edged Filter 
We can Cutoff Some of the Noise in 
Fourier Space

• Distinction Between Signal & Noise is 
Most Obvious in a Power Spectrum

• The Inverse Transform No Longer 
Magnifies this Noise Since the Highest  
Frequencies are Filtered Out

• Technique Cannot Filter Out Low
Frequency Noise but this is Rare in
Most Astronomical Data
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