Photometric Properties of Elliptical Galaxies

- Surface photometry (e.g. GALFIT)
 - Requires accurate flat fields and sky subtraction
 - Mask stars and contaminants
 - Fit ellipses at (say) logarithmic surface brightness levels
 - Adopt average ellipticity and position angle
 - Compute projected radius for each image pixel and bin to create surface brightness profile

- Rapid decrease in surface brightness with radius
- De-projection via Abel integral equation
 - Few analytic pairs \([I(R) \text{ vs. } j(R)]\) exist

Hubble Law:

\[
I(R) = \frac{I_0}{\left(1 + \frac{R}{R_0}\right)^2}
\]

de Vaucouleurs \((R^{1/4})\) law:

\[
I(R) = I_0 \exp \left(-7.67 \left[\left(\frac{R}{R_e} \right)^{1/4} - 1 \right] \right)
\]

or in surface brightness \((\text{mags/arcsec}^2)\):

\[
\mu(R) = \mu(R_e) + 8.325 \left[\left(\frac{R}{R_e} \right)^{1/4} - 1 \right]
\]

Sersic law (more general):

\[
I(R) = I_e \exp \left(-b \left(\frac{R}{R_e} \right)^{1/n} - 1 \right)
\]

where \(b = 1.999 n - 0.327 (N > 1)\)
Photometric Properties of Ellipticals: Cores

- **Core Properties of Elliptical Galaxies**
 - Fit cores and envelopes with separate power-law profiles
 - “Nuker” profiles (double power-law):
 \[I(R) = I_b 2^{(\beta - \gamma)/\alpha} (R/R_b)^{-\gamma} [1 + (R/R_b)^\alpha]^{(\gamma - \beta)/\alpha} \]
 - Power laws (diverge at R = 0):
 \[j(r) \sim r^{-1.9} \]
 - Cuspy cores (breaks flatter at small R):
 \[j(r) \sim r^{-0.8} \]
 - Power laws found in lower luminosity ellipticals
 \[M_v > -20.5 \]
 - Cores found in higher luminosity ellipticals
 \[M_v < -20.5 \]
 - Low luminosity dwarf spheroidals don’t fit in
 - Dead irregulars?

- **Kormendy’s summary**
 - Average surface brightness of Es falls with increasing luminosity
 - Dwarf spheroidal population distinct from classical elliptical galaxies
 - Globular clusters are not just small ellipticals.
 - Much denser (more tightly bound)
 - No dark matter?
Photometric Properties Galaxies: Spirals

- **Photometric Properties of Spiral Galaxies**
 - Surface photometry
 - Fit ellipses at (say) logarithmic surface brightness levels
 - Adopt average ellipticity and position angle
 - Compute projected radius for each pixel and bin
 - Two components in SB profile
 - Bulge (elliptical-like)
 - Exponential Disk
 - Bulge-Disk decomposition
 - Color gradients
 - Model fits:

For the bulge:

\[\mu(R) = \mu(R_e) + 8.325 \left(\frac{R}{R_e} \right)^{1/4} - 1 \]

Typical values for \(R_e \) are 0.5-4 kpc.

Integration of intensity yields:

\[I_{\text{Total}} = 7.22 \pi R_e^2 I_e \]

For the disk:

\[I(R) = I_0 \exp \left(-\frac{R}{R_d} \right) \]

\[\mu(R) = \mu_0 + 1.086 \left(\frac{R}{R_d} \right) \]

where \(R_d \) is the disk scale length.

Typical values for \(R_d \) are 2 - 5 kpc.
Kinematic Properties Galaxies: Spirals

- Kinematic Properties of Spiral Galaxies
 - Rotation curves
 - One-dimensional slit spectra
 - Flat rotation curves
 (Rubin)
 - Two-dimensional velocity fields
 - 21-cm velocity fields
 - Integrated spectra
 (Fisher & Tully)
 - Channel maps and Spider diagrams
 (Bosma)
 - ALMA will enable this in CO at high z
Kinematic Properties Galaxies: Ellipticals

• Velocity dispersions in ellipticals
 – Slit and fiber spectra
 • See Brault & White 1971 for General Application of FFTs to Spectroscopy
 • Template Fitting of Elliptical Spectra with Giant Star Spectra as Template
 • Absorption line spectra of Ellipticals
 • K-giant template spectra
 • Fourier quotient method
 • Fitting in Fourier Space
 (Sargent et al 1977)
 • Cross-correlation Method
 • Fitting in Real Space
 (Tonry and Davis 1981)
 • See IRAF XCORR documentation
 • Result is the Line-of-sight Velocity Distribution (LOSVD) function
 – Models
 • Most LOSVDs are well-fit with Gaussian so usually only dispersions are reported
 • Mapping from 2D IFUs is possible
 • Kinematically distinct cores
 • Substructure, etc.
 • Tensor Virial Theorem:
 • \(\frac{V_m}{\sigma} \) vs ellipticity implies flattening of elliptical is due to anisotropy (not rotationally supported)
Scaling Relations of Spiral Galaxies

- **Tully-Fisher Relation**
 - Empirical correlation between the amplitude of disk rotation curves and the luminosity of the galaxy.
 - Remarkable because it implies integrated star formation history is somehow regulated by the DM halo.
 - Star Formation Feedback?
 - Used to measure redshift-independent distances and to measure H_0
 - Should provide a measure of galaxy evolution since dark matter and luminous matter should evolve independently.

(Pierce & Tully 1992)
Scaling Relations of Elliptical Galaxies

- **Fundamental Plane**
 - Ellipticals occupy a 3-d plane (Djorgovski & Davis 1987)
 - Predicted by the virial theorem
 - Projection of the plane can result in an indicator of distance
 - Similar to the Tully-Fisher relation but for ellipticals
 - Both relations are calibrated nearby using stars (more about this later) and then used to measure the Hubble Constant over large scales
 - Both relations can be applied at moderate/high redshift in order to parameterize the evolution of galaxies
Nuclei of Galaxies

- Active galactic Nuclei
 - Existence of AGN invites investigation of galactic nuclei
 - Highly collimated jets and rapid variability implies small size of source.
 - More about this later but let’s examine properties of nuclei

- Nearness of M31 allows high spatial resolution
 - Early work identified stellar object as nucleus
 - High spatial resolution imaging showed this to be an error
 - Nucleus is actually the low SB center of the outer isophotes
 - Stellar object is a nearly superimposed globular cluster
 - High resolution spectroscopy showed rapid rotation and a high velocity dispersion.
 - Evidence of a Super Massive Black Hole (SMBH)

- HST provides relatively high resolution capabilities out to the Virgo Cluster (14 Mpc)
 - All galaxies (elliptical and spirals) studied in sufficient detail to date show evidence for an SMBH
Nuclei of Galaxies

- Existence of SMBH suggests their formation requires residence in galactic nucleus (Ferrarese & Merritt 2000; Gebhardt et al. 2000)
 - BH must form from evolution of high mass stars
 - SMBH requires an efficient process for growth
 - Mergers and massive accretion?
 - BHs must form early (high z) and then merge/grow to become SMBHs
 - Low SB disk galaxies seem to have wimpy SMBHs (few mergers?)
- Mass of the SMBH correlates with the mass of the bulge
 - Growth tied together?
 - Mergers could drive both bulge growth and fuel the SMBH
Nuclei of Galaxies

- **Cores of Spiral Galaxies Can Be Complex**
- **Some spiral galaxies have distinct cores**
 - Core has completely different rotational properties than remainder of galaxy
 - Implication is that a merger has driven gas and stars into the nucleus independent of the rest of the disk
 - Dynamical times of nucleus and disk are completely different
 - Nuclear material must be the more recent event
 - Effect seen in both gas (emission lines) and in stars (absorption lines)
- **AGN jet axis often not aligned with spiral galaxy’s rotation axis**
 - Further evidence that nuclear formation and accretion are distinct from the remaining galaxy
Some References

• Composite Sersic Profiles: Trujillo et al. 2004
 astroph/0403659
• Analysis and Restoration of Astronomical Data via the Fast
• Fourier Transform and Its Applications: Bracewell
 (McGraw-Hill)
• Fundamental Plane of Elliptical Galaxies: Djorgovski &
• Tully-Fisher Relation: Tully & Fisher 1977, AA 54, 661