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Photometric Properties Galaxies: Ellipticals

Photometric Properties of Elliptical Galaxies
—  Surface photometry (e.g. GALFIT)
* Requires accurate flat fields and sky subtraction
*  Mask stars and contaminants

»  Fit ellipses at (say) logarithmic surface
brightness levels

* Adopt average ellipticity and position angle

*  Compute projected radius for each image pixel
and bin to create surface brightness profile

— Rapid decrease in surface brightness with radius
— De-projection via Abel integral equation

*  Few analytic pairs [I(R) vs. j(R)] exist

Hubble Law:
IO

R 2
1+—
( Ro)

de Vaucouleurs (R"*) law:

I(R)=

1/4

I(R)=1, exp[—7.67[ =

or in surface brightness (mags/arcsec”):

R

e

u(R)=u(R,)+8.325 (5) -1

Sersic law (more general):

R 1/n
I(R)=1 -b||—| -1
ol )

where b = 1.999 n-0.327(N > 1)

16

18

20

22

24

26

28

3.5

1'1TT] L} IIY'TY_‘[TY TTI L Tr'Y]'ﬁrT'l"rT"1f‘Y']‘"-T
.
: T j
- “+—
= ——
- y - q
- - e
- -+ @ R
: ' P :
— . —4— . -
- e —~“+ X —
:- .‘—‘r—- ..J
- H‘- .-
- 3 -
’-lIlAlllellLLJlkllllL.-LLAllLlALllLlll‘lllllllLd
0 0.5 1 1.5 21 1.5 2 25 l/l3
log(R/arcsec) (R/arcsec)
e * jlr)rdr
IR =f dz = 2 —_—
(R) _mJ(T) z e VR
/\ Tous
z
R T
2 =12 _ R2
_ rdr
V(2 -R?)



Photometric Properties of Ellipticals: Cores

Core Properties of Elliptical Galaxies

Fit cores and envelopes with separate power-law profiles

“Nuker” profiles (double power-law):
I(R) = 1,26/%(R/Rp)7Y[1 + (R/Rp)*| 7PV«
Power laws (diverge at R =0):

](I') _ r-1.9

Cuspy cores (breaks flatter at small R):
j(@®) ~r-0.8
Power laws found in lower luminosity ellipticals
M, >-20.5
Cores found in higher luminosity ellipticals
M, <-20.5
Low luminosity dwarf spheroidals don’t fit in
Dead irregulars?

Kormendy’s summary

Average surface brightness of Es falls with increasing
luminosity
Dwarf spheroidal population distinct from classical
elliptical galaxies
Globular clusters are not just small ellipticals.

*Much denser (more tightly bound)

*No dark matter?

u—u(r,) (V magarcsec?)

“Central” Surface Brightness (B arcsec?)
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Photometric Properties Galaxies: Spirals

Photometric Properties of Spiral Galaxies

—  Surface photometry

»  Fit ellipses at (say) logarithmic surface
brightness levels

* Adopt average ellipticity and position angle
e Compute projected radius for each pixel and bin

—  Two components in SB profile
*  Bulge (elliptical-like)
* Exponential Disk
*  Bulge-Disk decomposition
*  Color gradients

—  Model fits:

For the bulge:

u(R) = u(R,)+8.325 (Rﬁ) -1

Typical values for R, are 0.5-4 kpc.
Integration of intensity yields:

Ly, =7227RI,

For the disk:

I(R)=1,exp (;Q—R) or

d

R
R) = 1.086( —
u®R) =y, + 86(R)

d
where R, is the disk scale length.

Typical values for R, are 2 - 5 kpc.
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Kinematic Properties Galaxies: Spirals

* Kinematic Properties of Spiral Galaxies
— Rotation curves
*  One-dimensional slit spectra
»  Flat rotation curves
(Rubin)
— Two-dimensional velocity fields
*  21-cm velocity fields
* Integrated spectra
(Fisher & Tully)

*  Channel maps and Spider diagrams
(Bosma)

* ALMA will enable this in CO at high z
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Kinematic Properties Galaxies: Ellipticals

Velocity dispersions in ellipticals

— Slit and fiber spectra

See Brault & White 1971 for General Application of FFTs
to Spectroscopy

Template Fitting of Elliptical Spectra with Giant
Star Spectra as Template

Absorption line spectra of Ellipticals
K-giant template spectra

Fourier quotient method

Fitting in Fourier Space

(Sargent et al 1977)
Cross-correlation Method

Fitting in Real Space

(Tonry and Davis 1981)

See IRAF XCORR documentation

Result is the Line-of-sight Velocity Distribution
(LOSVD) function

— Models

Most LOSVDs are well-fit with Gaussian so
usually only dispersions are reported

Mapping from 2D IFUs is possible
Kinematically distinct cores
Substructure, etc.

Tensor Virial Theorm:

V./o vs ellipticity implies flattening of elliptical is
due to anisotropy (not rotationally supported)
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Scaling Relations of Spiral Galaxies

*  Tully-Fisher Relation

Empirical correlation between the
amplitude of disk rotation curves and the
luminosity of the galaxy.

Remarkable because it implies integrated

star formation history is somehow
regulated by the DM halo.

* Star Formation Feedback?
Used to measure redshift-independent
distances and to measure H,

Should provide a measure of galaxy
evolution since dark matter and luminous
matter should evolve independently.
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Scaling Relations of Elliptical Galaxies

Fundamental Plane

Ellipticals occupy a 3-d plane (Djorgovski &
Davis 1987)
Predicted by the virial theorm

Projection of the plane can result in an indicator
of distance

Similar to the Tully-Fisher relation but for
ellipticals

Both relations are calibrated nearby using stars
(more about this later) and then used to measure
the Hubble Constant over large scales

Both relations can be applied at moderate/high
redshift in order to parameterize the evolution
of galaxies
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Nuclei of Galaxies

Active galactic Nuclei g
—  Existence of AGN invites investigation of ;,:8-
galactic nuclei
— Highly collimated jets and rapid variability
implies small size of source.
—  More about this later but let’s examine
properties of nuclei
Nearness of M31 allows high spatial resolution
—  Early work identified stellar object as nucleus .- o iy
. . o . . |l|llllﬁ]lillllllllllllllrl
—  High spatial resolution imaging showed this to be an error 300 — A ]
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Nuclei of Galaxies

Existence of SMBH suggests their formation
requires residence in galactic nucleus
(Ferrarese & Merritt 2000; Gebhardt et al.
2000)

BH must from from evolution of high mass stars
SMBH requires an efficient process for growth
Mergers and massive accretion?

BHs must form early (high z) and then
merge/grow to become SMBHs

Low SB disk galaxies seem to have wimpy
SMBHs (few mergers?)

Mass of the SMBH correlates with the mass of
the bulge

Growth tied together?

Mergers could drive both both the bulge growth
and fuel the SMBH
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Nuclei of Galaxies

Cores of Spiral Galaxies Can Be Complex
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Some spiral galaxies have distinct cores - .
—  Core has completely different rotational + i
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properties than remainder of galaxy iy } -1
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