Astr 5465 Wed., Feb. 5, 2020
Today s Topics

e Stars: Binary Stars
* Determination of Stellar Properties via Binary Stars
— Classification of Binary Stars

* Visual Binaries
— Both stars visible
— Only one star visible
* Spectroscopic Binaries
— Radial Velocity Curves
— Mass Function
* Eclipsing Binaries
— Light Curves
— Stellar Radii
— Contact Binaries

— Interferometic Stellar Diameters and Effective Temperatures
e Lunar Occultations
« Stellar Interferometers



Importance of Binary Stars

* Binary stars provide the primary means for
determining the physical properties of stars.
— Masses
— Radii
— Temperatures

— Luminosities

e Classification of Binary Stars
— Visual Binaries
* Visible motion of the stars
— Spectroscopic Binaries
« Radial velocity variations of the star(s)
— Eclipsing Binaries
* Brightness variations of the stars



Motion of Binary stars

Newton’ s form of Kepler’ s 3" law

for planets:
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For binary stars we consider the motion
of both stars about the center of mass.
Note that the period and semi-major
axis alone only give the sum of masses.
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From our text: Horizons, by Seeds



Visual Binaries

To North

 Both stars visible: e
— Ideal but rare

— Modeling to de-project
orbits

— mass ratio from each orbit
— sum of masses from period.

— Two equations, two
unknowns yield both
masses

— Brightnesses + parallax
give luminosities

 One star visible:
— More common
— Only sum of masses




Spectroscopic Binaries

e Only combined light visible

— Spectra reveal radial velocity variations

— Orbital projection is generally unknown but in principle:
* One set of lines yields sum of masses.

» Two sets of lines yields mass ratio:

m;vy; = mpVvjp
m;/m, = v,/v,

— If also eclipsing (see below) the orbital inclination is ~ 90°
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Eclipsing Binary Stars

« Eclipses place strong constraint on orbital inclination
e All eclipsing binaries are also spectroscopic binaries
e Additional Info. Obtained:

— Radii of stars (relative to orbit, see text)
— relative “surface brightness”
« area hidden is same for both eclipses

* drop bigger when hotter star hidden
AL = oT*
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Measuring Stellar Diameters - 1

e Lunar Occultations

— Shape of diffraction
pattern can be
modeled to reveal
stellar angular
diameters

— Rare since star must
be occulted and be
close enough for
parallax
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Figure 12-13 Occultation of a star by the Moon. As the
limb of the Moon cuts in front of the star, a diffraction
pattern appears before the light is completely cut out.
The top scale is an angular one; the bottom, a linear one.

7



Measuring Stellar Diameters - 11

e Michaelson Interferometer

— Visibility of fringes falls as the interferometer
resolves the star

— Only a few stars near enough for ground-based
measurements

— Future space-based interferometers may provide
considerably more

e Intensity Interferometer

— Two “telescopes” used to correlate fluctuations in
the number of photons.

— Correlation falls if separation resolves star

— Many stellar diameters have been measured via this
technique



The Hertzsprung-Russell Diagram

Stellar Atmospheres

Physical Characteristics
Temperatures
Spectral Line Formation

Classifying Stellar Spectra

Spectral Classification
Sequence

Temperature Sequence

Hertzsprung-Russel Diagram

Magnitudes vs. Spectral Type
Magnitude vs. Color
Luminosity Classification
Elemental Abundance Effects

Distances and the H-R
Diagram
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Stellar Atmospheres

* Radiative Transter of photons from deeper
layers must be modeled

— Scattering effects complicated
— Given density profile temp, pressure vs. depth

e Spectral Line Formation

— Given physical properties vs. depth Solve Boltzman
and Saha Equations
— Most of the atomic elements

» Requires huge list of ionization energies

» Requires huge list of spectral lines and transition
probabilities

— Compute strength and broadening for each line

— Result is a model stellar atmosphere:
* Fe and Fe+ line strength temperature sensitive.
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What Causes the Stellar Spectral Sequence?

Temperature (K)
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£ Figure 13-6 Absorption lines and

& temperature. The strengths (equiva-
lent widths) of the absorption lines

SiTv ¥ for various ionic species are shown

as a function of stellar temperature.
These changes result in ionization—

& . ) i 2 o % M7 excitation equilibria as described by
Speettal Type the Boltzmann-Saha equation.

« Saha Equation models the 1onization state of the atomic elements.

« Boltzman Equation describes the collisional excitation of each
element/ion. Both depend on temperature and pressure.

« Atomic Physics describes the transition probabilities of each atomic
level and strength of the corresponding spectral line.
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Stellar Abundances

* (GGiven an accurate stellar atmosphere model

— Lines of individual 1ons are matched in a self-
consistent way (Boltzman Equation).

— All 1onization states of an element summed to
yield elemental abundance.

— Abundance varied and the atmospheric model
recomputed until lines are reproduced to yield
elemental abundance.

— Interpolation of grid of models (temp. vs. log g)
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Hertzsprung-Russell (H-R) Diagram

Plot of Luminosity and Temperature of Nearby Stars Reveals H-R Diagram
Most stars found on the main sequence.
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Lines of constant Radius in the H-R diagram
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Main sequence not quite
constant R

L =4nR?cT*
B stars: R ~10 Rg,,
*M stars: R ~0.1 Rg,,

Betelgeuse: R~ 1,000 Rg,,
eLarger than 1 AU

White dwarfs: R~ 0.01 Rg,,
*A few Earth radii

What causes the “main

sequence’ ?
*Why “similar” size, with R so
tightly related to T?
*Why range of T?

Mass Sequence! 14
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Luminosity Classes
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From our text: Horizons, by Seeds

All Stars of Given Temp. Don’t
Have Same Luminosity

« Ja  Bright supergiant
« Ib Supergiant

« II  Bright giant

« III Giant

« IV Subgiant

« V  Main sequence star

» white dwarfs not given a
Roman numeral

e Sun: G2V
* Rigel: B8 Ia
» Betelgeuse: M2 Iab
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10,000 In this histogram, bars rise from
an H-R diagram to represent the
frequency of stars in space.
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Masses and the HR Diagram

- Main Sequence

position:

— M: 0.5 Mg,
- G: 1 Mg,
— B: 40 M,

-~ Luminosity Class

— Must be controlled
by something else
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The Mass-Luminosity Relationship

* Popper (1980)
x Cesteret al (1983)
¢ Grenierefal (1985)

° LMS — M3.5

* Implications for
lifetimes:
10 Mg, star

— Has 10 x mass
— Uses 1t 10,000 x faster

— Lifetime 1,000 shorter

10
massm {in M.)—

18

From our text: Horizons, by Seeds



ms
O

PDMF ¢_ (logm)in smrs/pc‘z/unit logm
3, o)

Main Sequence Lifetime of Stars

Stellar Census

Mass Function (# vs. Mass)

Luminosity Function [L vs. Mass (MS)]
Stellar Interiors Models

Main Sequence Lifetime

Post-main sequence evolution
Evolutionary Tracks (cmd locus vs. time)

® Present work
* Scalo (1986)

© Germany et al (1982)
x Bisiaccht et al (i983)

o Humphreys and McEiroy (1984)
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Absolute Visual Magnitude

H-R Diagram of the Brightest vs. the Nearest Stars
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