Astronomy 5465 Galaxies

- Michael Pierce
 - Office: Physical Sciences 206
 - Phone: 766-6102
 - E-Mail: mpierce@uwyo.edu
 - Office Hours
 - By Appointment

Astro 5465 Tuesday. Jan. 18, 2022 Today's Topics

- Class Overview
 - Overview of Material
 - Syllabus
 - Schedule
- Introductions
 - Who are you?
 - Who am I?
- Course Prologue
 - Summary of Galactic and Extragalactic Astronomy
 - Historical Overview

Highlights of the Syllabus

• Text:

- Galaxies in the Universe – Sparke & Galagher

Additional References:

- Galactic Astronomy Binney and Merrifield
- Galactic Dynamics Binney & Tremaine

• Popular Texts:

- Coming of Age in the Milky Way Ferris
- Lonely Hearts of the Cosmos Overbye
- Minding the Heavens: Story of Our Discovery of the Milky Way Belkora

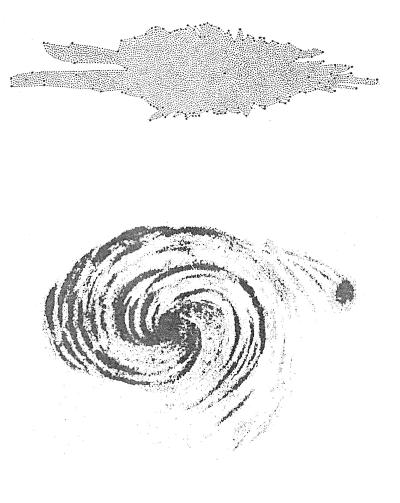
Additional Readings:

- Articles & Papers from the Literature, especially Annual Reviews
- Lectures: Reading done in advance, notes on the web
 - One chapter covered each week!
- Homework: Typically Assigned/Due on Wednesdays
- Exams: Midterm Exam + Final Presentation
- Grading: Exams 50%, Homework 50%

Syllabus Continued

- This Course will Feature Three Themes:
- Galaxies as stellar population factories
- Galaxies as fossil remnants of early formation processes
 - Secular evolution, evolution of stellar populations, etc.
- Sites of unique astrophysics (dark matter)
- Lecture:
 - I plan to lecture 3 hours per week but let each of you lead a discussion of the assigned readings (~ 15 min. on Friday).
- Homework (25%):
 - Homework will be assigned periodically: analytic & computational
- Exams (50%):
 - Midterm (25%) and Final Presentation (25%)

Who am I?


• Background

- Ph.D University of Hawaii
 - Measured Expansion of the Universe
 - Inferred Existence of Dark Energy
- Plaskett Fellow, Herzberg Institute for Astrophysics (Victoria, BC)
- Research Fellow, Kitt Peak National Obs. (Tucson, AZ)
- Assistant Professor, Indiana University
- Associate Professor, University of Wyoming
- Research Interests
 - Evolution of Galaxies
 - Gravitational Lensing & Cosmology
 - Astronomical Instrumentation

What Do You Think of When You Think of Galaxies?

Brief History of Galaxies

- Galileo Uniform distribution of Bright Stars but Faint Stars form Flattened Plane -Milky Way
- Kant Galaxies as Island Universes
 - Solar System analogy: flattened structure dominated by gravitational force
 - The Nebulae could be similar but very distant systems
- Messier's Catalog of the brightest nebulae (star clusters & galaxies)
- Herschel's catalogs of nebulae (circa 1780) followed by Dreyer's NGC (New General Catalog)
- Herschel's star counts (#stars vs. mag.) reveal flattened disk of stars
- Ross (circa 1845) observes spiral structure in some nebulae

Brief History of Galaxies Cont.

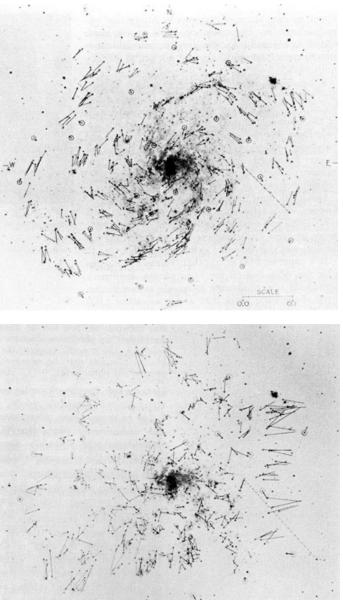
- Kapteyn Selected Areas around the sky (~200 designated by IAU)
 - World-wide effort to count stars vs. mag. (pg mags: calibration wrt North Polar Sequence)
 - Spectral Types and velocities of brightest stars
 - Results (collected by Kapteyn [1909, Ap.J. 29, 46, 30, 284, 398]):
 - MW is a flattened distribution of stars (5:1 axial ratio)
 - Sun at center with density decrease in all directions (50% at 800 pc, 10% at 2800 pc)
 - Sun about 650 pc from center
 - Kapteyn considered extinction but since reddening was modest concluded it was negligible (assumed scattering dominated, not extinction)
- Trumpler (1930) discovers significant extinction using Galactic clusters
 - stars in clusters dim faster than distance (angular size) would produce
 - star counts in "dark nebulae" are offset wrt unobscurred regions

Brief History of Galaxies Cont.

- Shapley (1918, 1919) discovers the true size of the Milky Way
 - distribution of Globular Clusters not centered on Sun
 - centered about 15 kpc from Sun (RR Lyrae variables)
 - concentrated in direction of Sagittarius
 - Milky Way is 100 kpc across
 - Recognized "zone of avoidance" but didn't connect it with extinction
- Shapley-Curtis Debate (1920) on
 - Size of the Milky Way and Location of the Sun
 - Distance and Nature of Spiral Nebulae
- Shapley Galaxy is very big and contains spiral nebulae
- Curtis Galaxy is small and spiral nebula are distant galaxies
- Oort Suggested Extinction

9

Brief History of Galaxies Cont.


- Summary of the Great Debate on the Nature of Spiral Nebulae
- Both were right and both were wrong! Details:

•	<u>Curtis:</u>	<u>Shapley:</u>
•	Kapteyn: right (MW ~ 10 kpc)	wrong (MW ~ 100 kpc)
•	SN1885: Nova – M31 at 150 kpc	Nova – M31 at 150 kpc
•	(external galaxy)	(M31 inside MW!)
•	van Maanen's rotation of M33: ??	if V ~ 200 km/s, D < 50 kpc
•	high v stars: unbound to MW, why?	OK since MW is massive
•	MW appearance: like edge-on nebulae	??
•	Zone of Avoidance: neglected extinction	destruction of globulars
•	Hubble's Measurements of Extragalactic Cepheids	
	Hubble resolves M31 disk into stars (1920)	
	Cepheid Period-Luminosity Relation (Leavitt 1920)	

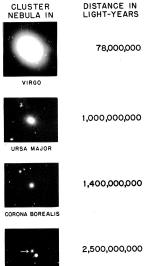
- Finds Cepheids in NGC 6822 and M31 (1922) and shows they are ~ 300 kpc away

Van Maanen vs. Lunmark

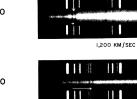
- Van Maanen claimed to have measured proper motion of rotation within M33
 - Most talented and respected astrometrist of his day
 - Work was unquestioned since it demonstrated what most expected.
- Lundmark checked this after Hubble's measurement of extragalactic Cepheids
 - Unable to confirm van Maanen's results
 - No evidence for rotation.
 - Huge embarrassment for Van Mannen
- This is an excellent example of the scientific method.
 - Best theoretical expectation of the day
 - Initially confirmed
 - New data led to inconsistency
 - Ultimately overturned.

Early Ideas Regarding Stellar Populations

- Lindblad (1927) stars move under mutual attraction of gravity
 - MW is an axisymmetric disk with 2 components:
 - One component with rotational motion
 - One component with random motion (explained high velocity stars)
- Oort (1927,28) high velocity stars form a distinct kinematic component, but most in circular orbits traveling with the Sun
- Baade (1944, Ap.J. 100, 137, 147) develops concept of two distinct stellar populations
 - Resolves bulge of M31 into stars (i.e., Tip of Red Giant Branch)
 - Spiral Galaxies Also Composed of Two Populations (just like MW)
- Pop. I Blue and Red Supergiants
 - Disk-like structure with rotational motion
 - Young and metal rich (Solar comp.) but some older stars (Sun-like) too
- Pop. II Red Giants and dwarfs
 - Spherical-like structure with random motions
 - old, metal poor (no young metal-poor stars or old metal-rich stars)
 - MW bulge? No! not associated with the local metal-poor stars (the halo)
- Pop. III (extremely low metallicity but what about bulges)?

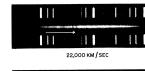

Optical Classification of Other Galaxies

• Hubble Morphological Sequence

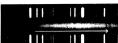

Nebulae are Galaxies but so different
E's -> S0s -> Sa -> Sb -> Sc with parallel barred sequence

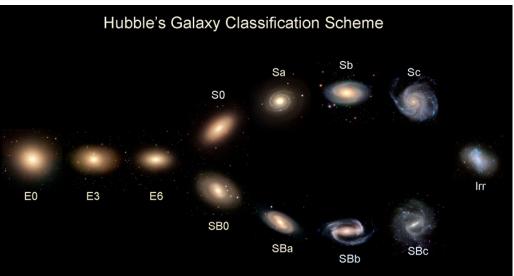
- Structural and Color Trends
 - -Yes, red and blue sequences
 - -Populations I & II? (No!)
- Kinematical Difference
 - -Rotation vs. Velocity Dispersion
- Velocity-Distance Relation

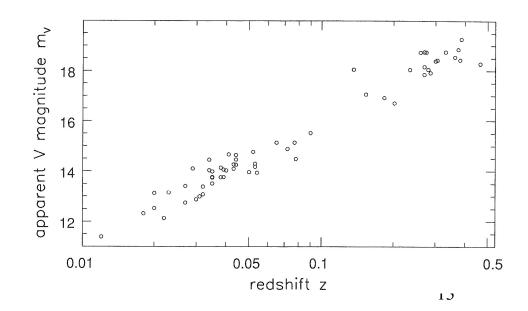
-Universe expanding (more later)



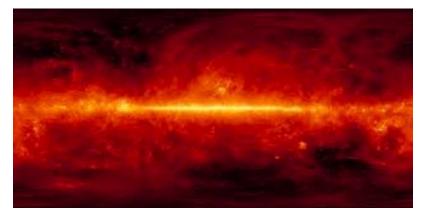
3,960,000,000

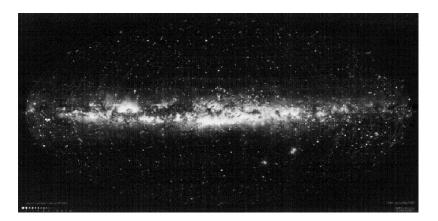

15,000 KM/SEC

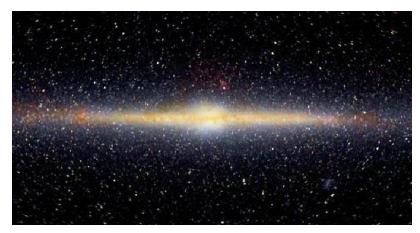

RED-SHIFTS



61.000 KM/SEC

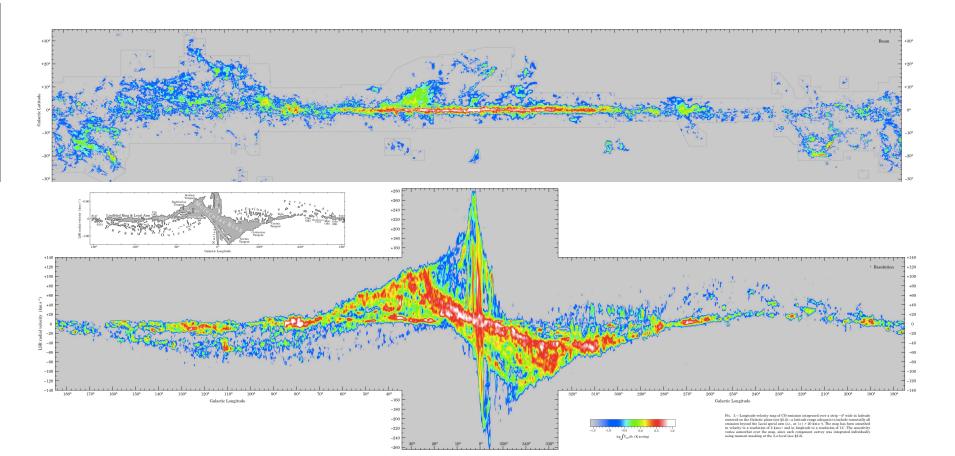





BOOTES

Milky Way is a Disk Galaxy

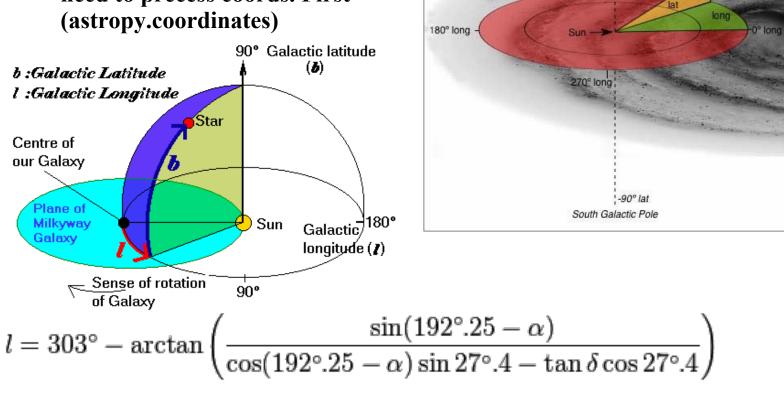
- Optical Morphology Reveals Disk of Stars and Dust
 - HII Regions, Star Clusters, etc.
 - Bulge Seen Through "Baade's Window"
- Near Infrared Reveals Near Dust Free Distribution of Stars
 - Fall-off in Stellar Density with Radius
 - Full Bulge and it's "Boxy" Morphology
- Far Infrared Reveals Cool Dust



http://astrog80.astro.cf.ac.uk/Chromoscope-tiles/

Interstellar Medium of the Milky Way

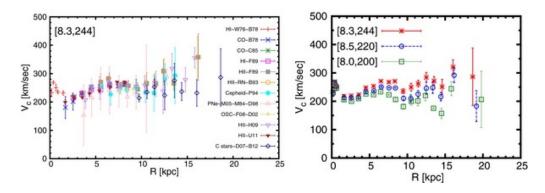
- Jansky (1932) discovers radio continuum of the Milky Way
- Van de Hulst (1944) uses quantum mechanics to predict the 21-cm line (hyperfine) line of neutral Hydrogen
- Oort et al. (1958) map the MW at 21-cm (maximum velocity = tangent point, more later)
- Recent Maps of MW in CO (Dane et al. 2001)

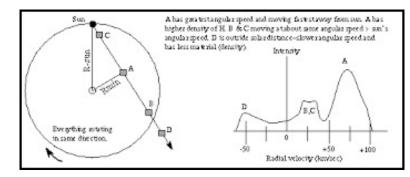


Galactic Coordinate System

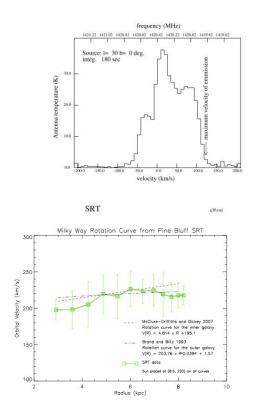
North Galactic Pole

90° long


- Galactic Coordinates are Defined wrt The Center of the Galaxy
 - Transformations given below are in 1950 coords. So you need to precess coords. First (astropy.coordinates)



 $\sin b = \sin \delta \sin 27^{\circ}.4 + \cos \delta \cos 27^{\circ}.4 \cos(192^{\circ}.25 - \alpha)$


Milky Way HI Rotation Curve

- MW HI Easily Detected as 21-cm Emission
- Along Any Line-of-Sight HI Has Range of Velocity
 - Clouds, Complex Structure
 - Maximum Velocity Found Near Tangent Point Due to Orbital Projection
 - Nice Data from Student Led Projects (see Figure Spectrum from Haystack Obs.)
 - Review: Bhattacharjee 2014 (ApJ 785, 63)

Reading this Week

By Thursday:

Start Reading Chapter 1 in text: (review of stellar properties)

HW #1 (due Tues. Jan 25):

a) Use the data summarized by Bhattacharjee (2014) to plot the rotation curve in Python. Use your own judgement on how to plot it.

b) Compute an appropriate average by fitting a spline to each data set for interpolation and combining them.

c) Assume a spherical mass model for the Galaxy and compute both M(R) and $\rho(R)$. Make a plot of your results and fit a polynomial model. Comment on your results and provide a summary of your results.